51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯系我們
基于經驗公式的連續(xù)手勢動作表面肌電信號識別方法

Continuous hand gesture surface electromyography recognition method based on empirical formula

作者: 朱旭鵬  陳香  李云  趙璋炎 
單位:中國科學技術大學(合肥 230027)
關鍵詞: 表面肌電信號;連續(xù)手勢;手勢識別;經驗公式 
分類號:
出版年·卷·期(頁碼):2012·31·2(117-124)
摘要:

目的 實現連續(xù)手勢動作表面肌電信號(surface electromyography,sEMG)的簡單有效識別。方法 首先推導出測試信號屬于手勢動作模板的概率密度經驗公式,通過數據處理實驗確定公式參數,最后設計連續(xù)手勢識別實驗以測試該經驗公式用于動作sEMG識別的效果。結果 推導出的經驗公式在連續(xù)手勢識別中獲得了較好的識別結果,驗證了該經驗公式用于連續(xù)手勢動作sEMG信號識別的有效性。結論 基于經驗公式的方法為實現基于sEMG信號的連續(xù)手勢識別提供了一種可行的解決方案。

Objective To realize the continuous hand gesture recognition using surface electromyography(sEMG). Methods A method for continuous hand gesture recognition based on an empirical formula is proposed. This method consists of three steps. First,a formula to describe the probability of testing samples belonging to each hand gesture class is derived from the hand gesture features. Next,the empirical coefficients for the formula are determined by a data processing experiment. Finally,the performance of sEMG classification based on the proposed empirical formula is quantified via the experiment on continuous hand gesture recognition. Results The empirical coefficients for the formula are able to be determined by experimental method effectively,and promising results on the EMG-based continuous hand gesture recognition can be achieved through the proposed empirical formula. The experimental results demonstrate the effectiveness of applying such empirical formula on sEMG-based hand gesture recognition. Conclusions The proposed method using empirical formula provides a practical solution to sEMG-based real-time continuous hand gesture recognition.

參考文獻:

[1]阮迪云,壽天德. 神經生理學[M]. 合肥:中國科學技術大學出版社,1992.
Ruan DY, Shou TD. Neurophysiology[M]. Hefei: University of Science and Technology of China Press, 1992.
[2]Oskoei MA,Hu HS. Myoelectric control systems-a survey[J]. Biom Sig Proc and Con, 2007,2(4):275-294.
[3]Naik GR,Kumar DK, Jayadeva.Twin SVM for gesture classification using the surface electromyogram[J]. IEEE Trans on Infor Tech in Biom,2010,14(2):301-308.
[4]何樂生. 基于肌電信號的人機接口技術的研究[D].南京:東南大學,2006.
[5]涂有強,陳香,張旭,等.一種適用于手勢動作sEMG 信號識別的改進型模糊推理分類器[J]. 北京生物醫(yī)學工程,2008,27(4):362-366,392.
Tu YQ, Chen X, Zhang X, et al. Review of finite element models used in neck injury caused by autombile accidents[J]. Beijing Biomedical Engineering, 2008,27(4): 362-366, 392.
[6]Zhao ZY, Chen X, Zhang X,et al. Study on online gesture sEMG recognition[J]. Intelligent Computing(ICIC 2007),Lecture Note in Computer Science,2007,4681:1257-1265.
[7]Ju Z, Liu H. Empirical copula driven hand motion recognition via surface electromyography based templates[J]. Intelligent Robotics and Applications,Lecture Notes in Computer Science,2010,6424:71-80.
[8] Li G,Li Y,Zhang Z,et al,Selection of sampling rate for EMG pattern recognition based prosthesis control[C]. Proc of IEEE EMBS,2010:5058-5061.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]