51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于紅外圖像的手關(guān)節(jié)區(qū)域自動提取

Automated extraction of metacarpophalangeal joints in infrared images of human hands

作者: 秦暢  卞春華  Monique  Frize 
單位:南京大學(xué)電子科學(xué)與工程學(xué)院(南京 210093)
關(guān)鍵詞: 興趣區(qū)域;紅外圖像;人手;定位;掌指關(guān)節(jié) 
分類號:
出版年·卷·期(頁碼):2012·31·2(130-133)
摘要:

目的 手工選取關(guān)節(jié)區(qū)域的診斷方式增加了關(guān)節(jié)類疾病診斷的主觀性和工作量。針對這一問題本文提出一種自動定位紅外圖像中人手關(guān)節(jié)的方法。方法 根據(jù)人手的解剖學(xué)結(jié)構(gòu)和手部特征點(diǎn)的位置,提出自動提取手關(guān)節(jié)區(qū)域的3種模型,即四邊形模型、橢圓形模型和圓形模型,其中手部特征點(diǎn)包括目前手部圖像研究中常用的11個特征點(diǎn),以及本文新提出的2個輔助特征點(diǎn)。最后,通過一種基準(zhǔn)圖像比較方法驗(yàn)證本文方法的有效性。結(jié)果 使用該方法能夠準(zhǔn)確找到關(guān)節(jié)中心的位置,在紅外圖像中自動定位出手部關(guān)節(jié)區(qū)域。結(jié)論 該關(guān)節(jié)區(qū)域自動提取算法有助于關(guān)節(jié)定位及疾病診斷。

Objective At present,joint areas still need to be located manually in the diagnosis of joint diseases,which is subjective and time consuming.To solve this problem,this paper presents a method for automated extraction of metacarpophalangeal (MCP) joints in infrared images of human hands.Methods Based on the averaged anatomical structure and the 13 landmarks of hand,three models:rectangle model,ellipse model and circle model are proposed.The 13 landmarks used in this paper include 11 common accepted landmarks in hand image research and two assistant landmarks proposed here.In addition,a new method of comparing with reference images is proposed to evaluate the accuracy and validity of the three models.Results The algorithm can help us to locate the centers of the joints and extract the joint areas accurately in infrared images.Conclusions The algorithm assists the localization of hand joints and is helpful to the diagnosis and therapy of joint diseases.

參考文獻(xiàn):

[1]Ana KN,Chaoa EY,Cooney IIIa W P,et al,Normative model of human hand for biomedical analysis[J].Journal of Biomechanics,1979,12(10):775-788 .
[2]Buchholza B,Armstrongb TJ,Goldsteinc SA.Anthropometric data for describing the kinematics of the human hand[J].Ergonomics,1992,35(3):261-273.
[3]Herry C,Frize M,Goubran RA.Segmentation and landmark identification in infrared images of the human body[C].IEEE Engineering in Medicine and Biology Society,2006:957-960.
[4]Herry CL,Goubran RA,Frize M.Segmentation of infrared images using cued morphological processing of edge map[C].IEEE Instrumentation and Measurement Technology Conference,2007:1-6.
[5]Herry CL,Goubran RA,Frize M.Improving the detection and localization of anatomical landmark points in infrared images using symmetry and region specific constraints[C].IEEE Instrumentation and Measurement Technology Conference,2008:1306-1311.
[6]Houdas Y,Ring E.Human body temperature:its measurement and regulation[M].Washington DC:Plenum Press,1982.
[7]Cynthia Adéa. Severity of Illness Measures of Rheumatoid Arthritis Using Thermal Infrared Imaging[D].Canada:Carleton University,2009.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]