51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于RCSCT變換的DR圖像去噪及加速

DR image de-noising and acceleration based on recursive cycle spinning contourlet transformation

作者: 林芳宇  羅海  周荷琴 
單位:中國科學技術(shù)大學信息科學技術(shù)學院(合肥 230027)
關(guān)鍵詞: DR圖像去噪;Contourlet變換;遞歸循環(huán)平移;計算統(tǒng)一設(shè)備架構(gòu) 
分類號:
出版年·卷·期(頁碼):2012·31·3(245-250)
摘要:

目的  數(shù)字化X線攝影(digital radiography,DR)圖像中的高斯噪聲對圖像質(zhì)量影響大,消除此類噪聲有利于提高圖像質(zhì)量以輔助醫(yī)生做出正確的診斷。方法 為抑制DR圖像的高斯噪聲,首先采用遞歸循環(huán)平移與Contourlet變換結(jié)合的(recursive cycle spinning Contourlet transform,RCSCT)方法變換分解DR圖像,接著采用連續(xù)的二元軟閾值函數(shù)處理變換系數(shù)防止系數(shù)被過度扼殺,然后基于CUDA(compute unified device architecture,計算統(tǒng)一設(shè)備架構(gòu))平臺對去噪方法加速。結(jié)果 該方法提高了去噪后的圖像峰值信噪比,有效抑制了偽吉布斯現(xiàn)象,保留了更多的圖像細節(jié)信息,并且加速處理后運算耗時較短。結(jié)論 本文方法比小波變換和Contourlet變換在保留視覺細節(jié)信息方面效果更優(yōu),算法耗時少,實用性好。

Objective  The influence of Gaussian noise on digital radiography(DR)image is great,and the removal of Gaussian noise is beneficial to the image quality and clinical diagnosis. Methods To suppress Gaussian noise of DR image,this paper first decomposes DR image based on recursive cycle spinning Contourlet transform(RCSCT)that combines recursive cycle spinning and Contourlet transform,then adopts continuous binary soft threshold function to process the transformed coefficients,which can prevent coefficients over killed,and subsequently accelerates the de-noising method based on compute unified device architecture(CUDA)platform. Results The experimental results show that the suggested method can obtain higher PSNR value,inhibit Gibbs-like phenomena,and preserve more image details with shorter time-consuming after acceleration. Conclusions The proposed method based on RCSCT is better than wavelet transform and Contourlet transform in practicability,time consuming and preservation of visual information.

參考文獻:

[1]豐國棟,何祥彬,周荷琴. 基于Laplace-Impact混合模型的DR圖像去噪算法[J]. 中國醫(yī)療器械雜志,2009,33(4):247-250.
Feng Guodong, He Xiangbin, Zhou Heqin. DR image denoising based on Laplace-Impact mixture model[J]. Chinese Journal of Medical lnstrumentation, 2009, 33 (4): 247-250.
[2]Candes EJ,Do DL. Curvelets:A surprisingly effective non-adaptive representation for objects with edges[C]. Curve and Surface Fitting. Nashvil-le,TN,USA:Vanderbilt University Press,1999.
[3]Do MN,Vetterli M. Contourlets:A directional multiresolution image representation[C]. Proc of IEEE International Conference on Image Processing. Rochester,NY:2002: 357-360.
[4]Coifman RR,Donoho DL. Translation invariant denoising[C]. Wavelets and Statistics,Springer Lecture Notes in Statistics 103. New York:Springer Verlag,1995: 125-150.
[5]Fletcher AK,Ramchandran K,Goyal VK. Wave-let denoising by recursive cycle spinning[C]. Proc IEEE International Conference Image Processing. Rochester,NY:2002: 873-876.
[6]Fletcher AK,Ramchandran K,Goyal VK. Iterative projective wavelet methods for denoising[J]. Proc Wavelets:Appl in Sig & Image Proc X,part of  SPIE Int Symp on Optical Sci & Tech,2003,5207(1):9-15.
[7]Eslami R,Radha H. The contourlet transform for image de-noising using cycle spinning[C]. Asilo-mar Conference on Signals,Systems,and Compu-ters. Pacific Grove,USA:2003. 1982-1986.
[8]梁棟,沈敏,高清維,等. 一種基于Contourlet遞歸Cycle Spinning的圖像去噪方法[J]. 電子學報,2005,33(11):2044-2046.
Liang Dong,Shen Min, Gao Qingwei, et al. A method for image de-noising based on the Contourlet transform using recursive cycle spinning[J]. Acta Electronica Sinica, 2005, 33(11): 2044-2046.
[9]楊曉慧,焦李成,牛宏娟,等. 基于多閾值的非下采樣輪廓波圖像去噪方法[J]. 計算機工程,2010,36(4):200-204.
Yang Xiaohui, Jiao Licheng, Niu Hongjuan, et al. Image Denoising Method for Nonsubsampled Contourlet Based on Multi-threshold[J]. Computer Engineering, 2010, 36(4): 200-204.
[10]何祥彬,周荷琴,李方勇. 基于CUDA平臺的DR圖像增強處理加速算法[J]. 中國醫(yī)療器械雜志,2010,34(1):9-11.
He Xiangbin, Zhou Heqin, Li Fangyong. A new approach to accelerate DR image enhancement based on CUDA[J]. Chinese Journal of Medical lnstrumentation, 2010, 34(1): 9-11.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]