51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于數(shù)學(xué)形態(tài)學(xué)與核主成分分析的峰電位檢測(cè)與分類方法

Unsupervised spike detection and sorting with mathematical morphology and kernel principal components analysis

作者: 王冬雪  周逸峰 
單位:中國(guó)科學(xué)技術(shù)大學(xué)電子科學(xué)技術(shù)系(合肥 200027)
關(guān)鍵詞: 峰電位;檢測(cè);分類;數(shù)學(xué)形態(tài)學(xué);核主成分分析 
分類號(hào):
出版年·卷·期(頁碼):2012·31·3(268-272)
摘要:

目的 為抑制高強(qiáng)度背景噪聲及信號(hào)疊加的干擾,提高峰電位的檢出率和分類的正確性,本文提出一種新的無監(jiān)督方法。方法 首先,應(yīng)用數(shù)學(xué)形態(tài)學(xué)的復(fù)合操作對(duì)信號(hào)進(jìn)行降噪,采用定閾值提取峰電位。然后,小波變換和核主成分分析法(kernel principal components analysis,KPCA)相結(jié)合,對(duì)已提取的峰電位波形進(jìn)行特征提取。最后,用改進(jìn)的最小距離法實(shí)現(xiàn)峰電位分類。結(jié)果 仿真實(shí)驗(yàn)結(jié)果表明,此方法對(duì)于不同噪聲強(qiáng)度的信號(hào),峰電位檢出率達(dá)94%,總分類正確率91%以上,其中大量疊加信號(hào)的分類正確率88%以上。結(jié)論 本方法能在有效抑制噪聲的基礎(chǔ)上,準(zhǔn)確提取峰電位并有效分類。

Objective We introduce a new unsupervised method for detecting and sorting spikes from extracellular recordings. Methods First,multiple mathematical morphology operation is used in signal de-noising before spike detection with a fixed threshold. Then,wavelet transform and kernel principal components analysis (KPCA) are performed to the detected spike waveforms to extract discriminative features. Finally,the minimum-distance clustering is proceeded to sort spikes. Results The simulation experimental results indicate that the spike detectable rate is 94%. The classification accuracy in general is over 91% and that with many superposed signals is over 88%. Conclusions The results show that the method performs quite well even with the noisy simulated spike data.

參考文獻(xiàn):

[1]Quiroga RQ.Spike sorting,Rodrigo Quian Quiroga[J]. Scholarpedia Revision,2007,#377642(12):3583.
[2]Lewicki MS. A review of methods for spike sorting:the detection and classification of neural action potentials[J].Network,1998,9(4):53-78.
[3]Zhang PM,Wu JY,Zhou Y,et al. Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem[J]. J Neuroscience Methods,2004,135(1-2):55-65.
[4]James CJ,Hesse CW. Independent component analysis for biomedical signals. Physiol Meas,2005,26(1):R15-19.
[5]Xu GH,Wang J,Zhang Q,et al.A spike detection method in EEG based on improved morphological filter[J].Computers in Biology and Medicine,2007,37:1647-1652.
[6]Kim KH,Kim SJ.A wavelet based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio[J]. IEEE Transactions on Biomedical Engineering, 2003,50(8):999-1011.
[7]Lu CD,Zhang TY,Du XZ,et al.A robust kernel PCA algorithm,proceedings of the third international conference on machine learning and cybernetics[C].Shanghai:[s.n.],2004:26-29.
[8]趙峰,張軍英.一種KPCA的快速算法[J].控制與決策,2007,22(9):1044-1048.
Zhao Feng,Zhang Junying. Fast algorithm about KPCA[J]. Control and Decision,2007,22(9):1044-1048.
[9]汪增福.模式識(shí)別[M].合肥:中國(guó)科學(xué)技術(shù)大學(xué)出版社,2010.
[10]Quiroga RQ,ZNadasdy,Ben-Shaul Y.Unsupervised spike detection and sorting with wavelets and super paramagnetic clustering[J].Neural Comput,2004(16):1661-1687.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]