[1]李穎潔, 邱意弘, 朱貽盛. 腦電信號分析方法及其應用[M]. 北京:科學出版社, 2009.
Li Yingjie,Qiu Yihong,Zhu Yisheng.Naodian Xinhao Fenxi Fangfa Jiqi Yingyong[M]. beijing:Science Press, 2009.
[2]劉旋, 高小榕,張國君,等. 量化腦電分析方法及其在癲癇易發(fā)作期檢測中的應用[J]. 北京生物醫(yī)學工程, 2007, 26(3): 274-279.
Liu Xuan, Gao Xiaorong, Zhang Guojun,et al. Quantitative electroencephalogram analysis methods and its application in epileptic seizure vulnerable period detection[J]. Beijing Biomedical Engineering, 2007, 26(3): 274-279.
[3]汪春梅, 鄒俊忠,張見,等. 基于多分辨分析的腦電癲癇波自動檢測[J]. 計算機應用研究,2009, 26(8): 2958-2961.
Wang Chunmei, Zou Junzhong, Zhang Jian, et al. Automatic detection of epileptiform wave in EEG by multi-resolution analysis[J]. Application Research of Computers, 2009, 26(8): 2958-2961.
[4]Brunner C, Scherer R, Graimann B. Online control of a brain-computer interface using phase synchronization[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2501-2506.
[5]Mirzaei A, Ayatollahi A, Gifani,P, et al. EEG Analysis based on wavelet-spectral entropy for epileptic seizures detection[C]. 2010 3rd International Conference on Biomedical Engineering and Informatics, 2010: 878-882.
[6]Li T, Hong J. EEG classification based on small-world neural network for brain-computer interface[C]. Natural Comutation(ICNC), 2010, 5(1): 252-256.
[7]蔡冬梅, 周衛(wèi)東, 劉凱,等. 基于Hurst指數(shù)和SVM的癲癇腦電檢測方法[J]. 中國生物醫(yī)學工程學報,2010, 29(6): 836-840.
Cai Dongmei, Zhou Weidong, Liu Kai, et al. Approach of epileptic EEG detection based on Hurst exponent and SVM[J]. Chinese Journal of Biomedical Engineering,2010, 29(6), 836-840.]
[8]馬穎穎, 張涇周, 吳疆. 腦電信號處理方法[J]. 北京生物醫(yī)學工程, 2007, 26(1): 99-102.
Ma Yingying, Zhang Jingzhou, Wu Jiang. The modern processing method of EEG signal[J]. Beijing Biomedical Engineering, 2007, 26(1): 99-102.]
[9]Padmasai Y;SubbaRso K;Malini V. Linear Prediction Modelling for the Analysis of the Epileptic EEG[C]. Advances in Computer Engineering (ACE),2010 International Conference. 2010:6-9.
[10]Schneider, Mustaro M, Lima PN, et al. Automatic recognition of eplilepic seizure in EEG via support vector machine and dimension fractal[C]. International Joint Conference on Neural Network, 2009: 2841-2845.
[11]EEG Database at Epilepsy Center of the University Hospital of Freiburg, Germany[EB/OL].(2003). https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg.
[12]Chisci L, Mavino A, Perferi G. Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5): 1124-1132.
[13]朱天橋, 黃力宇. 單導癲癇腦電模糊特征提取的支持向量機發(fā)作預測[J]. 儀器儀表學報, 2010, 31(11): 2434-2439.
Zhu Tianqiao, Huang Liyu. Epileptic seizure prediction from single-channel scalp EEG using support vector machine based on fuzzy feature extracted with empirical mode decomposition[J]. Chinese Journal of Scientific Instrument, 2010, 31(11): 2434-2439.]
[14]朱俊玲,林宏,宿長軍,等. 小波能量評價EEG的不同成分對癲癇發(fā)作預報的價值[J]. 生物物理學報,2003, 19(1): 73-78 .
Zhu Junling, Lin Hong, Su Changjun, et al. The roles of different components of eggs for seizure prediction-wavelet energy evaluation[J]. Acta Biophysica Sinica, 2003, 19(1): 73-78.
|