51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于AR模型和Lempel-Ziv復雜度的癲癇發(fā)作預報

Epileptic seizure prediction based on AR model and LZC

作者: 韓敏  曹占吉  孫磊磊  洪曉軍 
單位:大連理工大學電子信息與電氣工程學部(遼寧大連 116023)
關(guān)鍵詞: 癲癇;腦電信號;自回歸模型;Lempel-Ziv復雜度;發(fā)作預報 
分類號:
出版年·卷·期(頁碼):2012·31·3(273-277)
摘要:

目的  癲癇是由多種病因引起的慢性腦功能障礙綜合征,及時的發(fā)作預報,對于建立新的治療方法和改善患者的生活質(zhì)量有著至關(guān)重要的作用。目前大部分腦電分析算法存在計算速度慢、適應性差等問題,無法滿足癲癇腦電發(fā)作預報的要求。方法 本文應用自回歸模型對腦電信號進行特征提取,支持向量機(support vector machine, SVM)作腦電各個時期分類器,并與Lempel-Ziv復雜度分析計算相結(jié)合,準確識別發(fā)作前期,以實現(xiàn)癲癇的發(fā)作預報。結(jié)果 應用弗萊堡大學數(shù)據(jù)對上述方法的有效性進行驗證。仿真結(jié)果表明,該方法得到的發(fā)作漏檢率、誤報率較低,預報提前時間較長。結(jié)論 將AR模型和Lempel-Ziv復雜度相結(jié)合,對癲癇發(fā)作預報的實現(xiàn),有一定參考價值和意義。

Objective Epilepsy is a chronic brain dysfunction syndrome caused by many diseases. The predictions of epilepsy seizure are significant for both the establishment of new treatment methods and the improvement of the patients’ life qualities. The current EEG analysis algorithm cannot meet the requirement of epileptic seizure prediction for the slow computation and the poor adaptability. Methods This paper applies autoregressive(AR) model for feature extraction, a support vector machine as a classifier, and combines Lempel-Ziv complexity(LZC) to identify preictal accurately. Results Using the data from Freiburg University, the simulation results show that the methods used in this paper achieve a lower false alarm rate, a lower failed reporting rate and a longer lead time. Conclusions This paper provides references for the realization of the epileptic seizure prediction by combining AR model and LZC.

參考文獻:

[1]李穎潔, 邱意弘, 朱貽盛. 腦電信號分析方法及其應用[M]. 北京:科學出版社, 2009.
Li Yingjie,Qiu Yihong,Zhu Yisheng.Naodian Xinhao Fenxi Fangfa Jiqi Yingyong[M]. beijing:Science Press, 2009.
[2]劉旋, 高小榕,張國君,等. 量化腦電分析方法及其在癲癇易發(fā)作期檢測中的應用[J]. 北京生物醫(yī)學工程, 2007, 26(3): 274-279.
Liu Xuan, Gao Xiaorong, Zhang Guojun,et al. Quantitative electroencephalogram analysis methods and its application in epileptic seizure vulnerable period detection[J]. Beijing Biomedical Engineering, 2007, 26(3): 274-279.
[3]汪春梅, 鄒俊忠,張見,等. 基于多分辨分析的腦電癲癇波自動檢測[J]. 計算機應用研究,2009, 26(8): 2958-2961.
Wang Chunmei, Zou Junzhong, Zhang Jian, et al. Automatic detection of epileptiform wave in EEG by multi-resolution analysis[J].  Application Research of Computers, 2009, 26(8): 2958-2961.
[4]Brunner C, Scherer R, Graimann B. Online control of a brain-computer interface using phase synchronization[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2501-2506.
[5]Mirzaei A, Ayatollahi A, Gifani,P, et al. EEG Analysis based on wavelet-spectral entropy for epileptic seizures detection[C]. 2010 3rd International Conference on Biomedical Engineering and Informatics, 2010: 878-882.
[6]Li T, Hong J. EEG classification based on small-world neural network for brain-computer interface[C]. Natural Comutation(ICNC), 2010, 5(1): 252-256. 
[7]蔡冬梅, 周衛(wèi)東, 劉凱,等. 基于Hurst指數(shù)和SVM的癲癇腦電檢測方法[J]. 中國生物醫(yī)學工程學報,2010, 29(6): 836-840.
Cai Dongmei, Zhou Weidong, Liu Kai, et al. Approach of epileptic EEG detection based on Hurst exponent and SVM[J]. Chinese Journal of Biomedical Engineering,2010, 29(6), 836-840.]
[8]馬穎穎, 張涇周, 吳疆. 腦電信號處理方法[J]. 北京生物醫(yī)學工程, 2007, 26(1): 99-102.
Ma Yingying, Zhang Jingzhou, Wu Jiang. The modern processing method of EEG signal[J]. Beijing Biomedical Engineering, 2007, 26(1): 99-102.]
[9]Padmasai Y;SubbaRso K;Malini V. Linear Prediction Modelling for the Analysis of the Epileptic EEG[C]. Advances in Computer Engineering (ACE),2010 International Conference. 2010:6-9.
[10]Schneider, Mustaro M, Lima PN, et al. Automatic recognition of eplilepic seizure in EEG via support vector machine and dimension fractal[C]. International Joint Conference on Neural Network, 2009: 2841-2845.
[11]EEG Database at Epilepsy Center of the University Hospital of Freiburg, Germany[EB/OL].(2003). https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg.
[12]Chisci L, Mavino A, Perferi G. Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5): 1124-1132.
[13]朱天橋, 黃力宇. 單導癲癇腦電模糊特征提取的支持向量機發(fā)作預測[J]. 儀器儀表學報, 2010, 31(11): 2434-2439.
Zhu Tianqiao, Huang Liyu. Epileptic seizure prediction from single-channel scalp EEG using support vector machine based on fuzzy feature extracted with empirical mode decomposition[J].  Chinese Journal of Scientific Instrument, 2010, 31(11): 2434-2439.]
[14]朱俊玲,林宏,宿長軍,等. 小波能量評價EEG的不同成分對癲癇發(fā)作預報的價值[J]. 生物物理學報,2003, 19(1): 73-78 .
Zhu Junling, Lin Hong, Su Changjun, et al. The roles of different components of eggs for seizure prediction-wavelet energy evaluation[J]. Acta Biophysica Sinica, 2003, 19(1): 73-78.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]