51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于CT三維圖像的肺結(jié)節(jié)良惡性鑒別研究

Identification of benign and malignant pulmonary nodule based on 3D CT image

作者: 常莎  王瑞平 
單位:                      北京交通大學計算機與信息技術(shù)學院 (北京100044)        
關(guān)鍵詞:                     肺部;CT圖像;三維重建;良惡性結(jié)節(jié);支持向量機          
分類號:
出版年·卷·期(頁碼):2013·32·1(12-16)
摘要:

目的 運用計算機方法處理肺部CT圖像以識別肺結(jié)節(jié)良惡性并輔助肺癌診斷,現(xiàn)已成為國內(nèi)外研究的熱點。方法 提出一種基于肺部CT圖像三維肺結(jié)節(jié)信息的肺結(jié)節(jié)良惡性鑒別方法。首先結(jié)合閾值分割、區(qū)域生長、形態(tài)學運算等在CT圖像上分割出肺結(jié)節(jié),進而提取每個肺結(jié)節(jié)的三維特征并優(yōu)化,選擇有效特征。然后,基于有效特征采用支持向量機(support vector machine, SVM)的分類算法對多維向量所描述的肺結(jié)節(jié)進行良惡性的二分類。最后從敏感性、特異性、準確率以及似然比等方面全面評估分類結(jié)果。結(jié)果 實驗獲得敏感性為0.7776,準確性為0.7378,陽性似然比2.2410,陰性似然比0.3682,顯示基于CT三維肺結(jié)節(jié)圖像可以達到令人滿意的肺部腫瘤良、惡性鑒別效果。結(jié)論 上述結(jié)果證明了基于CT三維圖像的肺結(jié)節(jié)良惡性鑒別方法的可行性。本研究對計算機輔助肺癌的診斷具有重要意義。

Objective Identification of benign and malignant pulmonary nodules by using the computer-aided detection and diagnosis system is one hot spot. Methods An identification method for benign and malignant pulmonary nodule based on the 3D information of lung CT image was proposed. First we segmented the pulmonary nodules from CT images with the methods of segmentation, regional growth, morphology, then extracted and optimized the 3D information of each pulmonary nodule. Finally we utilized the SVM classification algorithm to divide those pulmonary nodules into two categories based on the effective features. Results The classification results were assessed by sensitivity, specificity, accuracy, and likelihood ratio. From the experiment we got the results as follows, the sensitivity was 0.7776, the accuracy was 0.7378, the positive likelihood ratio was 2.2410 and the negative likelihood ratio was 0.3682. Conclusions All the results showed that the new method achieved satisfactory identification effect and was significant for the computer-aided diagnosis of lung cancer.

參考文獻:

[1]崔云,馬大慶.肺結(jié)節(jié)的CT計算機輔助檢測和診斷的基本方法和應(yīng)用[J].中國醫(yī)學影像技術(shù),2007,23(3):469.
Cui Yun, Ma Daqing. The basic methods and application of computer-aided detection and diagnosis of lung nodule in CT[J].Chin J Med Imaging Technol,2007,23(3):469.
[2]李越.基于形態(tài)學及灰度熵的肺結(jié)節(jié)檢測算法[D].北京:北京交通大學,2011:24-27.
Li Yue. A detection algorithm based on morphology and gray entropy for pulmonary nodules [D]. Beijing: Beijing Jiaotong University,2011:24-27.
[3]楊聃.三維肺部CT圖像中的結(jié)節(jié)自動識別[D].武漢:華中科技大學,2007.
Yang Dan. A thesis submitted in partial fulfillment of the requirements for the degree of master of science[D].Wuhan: Huazhong University of Science and Technology, 2007.
[4]馮偉興,唐墨,賀波.數(shù)字圖像模式識別技術(shù)詳解[M].北京:機械工業(yè)出版社,2010:53-64.
Feng Weixing, Tang Mo, He Bo. Digital image pattern recognition programming using Visual C++[M]. Beijing: China Machine Press, 2010:53-64.
[5]Omar S. Al-Kadi, D. Watson. Texture Analysis of Aggressive and Nonaggressive Lung Tumor CE CT Images[J]. IEEE transactions on biomedical engineering, 2008,55(7):1826-1829
[6]Onur Osman, Serhat Ozekes, Osman N.Ucan.Lung nodule diagnosis using 3D template matching[J]. Computers in Biology and Medicine,2007,37:1167-1172
[7]Messay T,Hardie RC,Rogers SK. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery[J].Medical Image Analysis,2010,(14):390-406
[8]姜慧妍,何煒.基于胸部CT圖像的肺癌識別方法的研究[J].電子學報,2009,37(8):1664-1668.
Jiang Huiyan, He Wei. Research of lung cancer recognition based on chest CT images[J], Acta Electronica Sinica, 2009,37(8):1664-1668.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]