51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
___________基于LBP的改進(jìn)Random_Walks算法在顱腦磁共振影像分割中的應(yīng)用_________

Brain tissue segmentation in MRI with improved Random Walks based on local binary patterns

作者:               劉偉  童同  黃煜峰  馮煥清          
單位:           中國(guó)科學(xué)技術(shù)大學(xué)電子科學(xué)與技術(shù)系(合肥230027)    
關(guān)鍵詞:           隨機(jī)游走;局部二值模式;先驗(yàn)概率;腦組織;分割      
分類(lèi)號(hào):
出版年·卷·期(頁(yè)碼):2013·32·3(237-242)
摘要:

目的 由于顱腦結(jié)構(gòu)復(fù)雜且顱腦磁共振影像易受噪聲、磁場(chǎng)不均勻性、部分容積效應(yīng)等因素的影響,

精確的腦組織分割方法仍需深入研究。方法 本文提出一種基于Random Walks的改進(jìn)算法以提高腦白質(zhì)、

腦灰質(zhì)及腦脊液分割的準(zhǔn)確性。通過(guò)引入局部二值模式(local binary patterns,LBP)改進(jìn)了傳統(tǒng)Random

Walks權(quán)重函數(shù)的構(gòu)造,在反映相鄰像素灰度變化信息的同時(shí)包含了局部圖像的紋理信息,有利于合并同

質(zhì)區(qū)域并增強(qiáng)邊緣輪廓的識(shí)別。本文還使用了灰度先驗(yàn)概率模型減少Random Walks種子點(diǎn)交互的次數(shù)。結(jié)

果 實(shí)驗(yàn)結(jié)果表明基于LBP的改進(jìn)算法在多種不同水平的噪聲及不均勻場(chǎng)作用下,能夠有效識(shí)別磁共振影像

中腦組織區(qū)域的邊緣輪廓,并對(duì)噪聲有良好的魯棒性。結(jié)論 基于LBP的改進(jìn)Random Walks算法可精確分割

顱腦磁共振影像。

Objective Accurate segmentation of brain tissue in MRI is an essential step and

remains a challenging problem because of acquisition noise,non-uniformities in the MR

magnetic field,partial volume effects and the complex anatomy structure of the brain.

Methods In this paper,we presented a novel approach based on Random Walks (RW) to extract

white matter (WM),gray matter (GM) and cerebrospinal fluid (CSF). To overcome the

shortcomings of Random Walks,we introduced the concept of local binary patterns (LBP) into

Random Walks to construct a new weighting function. The new weighting function not only

reflected the changing information of adjacent-pixel’s gray value,but also contained the

texture information of local image,which could strengthen the ability of RW to identify

homogeneous pixels and edges. We also achieved a better performance with prior probability

model. Results Experiment results were analyzed against different levels of noise and bias

field,and the proposed method performed better discriminative power of identifying the

brain tissue boundary. Conclusions This improved Random Walks based on LBP segments brain

tissue images accurately.
 

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]