51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
MRI大腦圖像灰質(zhì)與白質(zhì)的分割

Segmentation for brain grey matter and white matter of a MRI brain image

作者: 陳亮亮 
單位:陳亮亮。E-mail:[email protected]
關(guān)鍵詞: MRI大腦圖像;小波變換;大腦灰質(zhì);大腦白質(zhì);閾值分割;多尺度 
分類號(hào):
出版年·卷·期(頁(yè)碼):2013·32·5(519-523)
摘要:

目的 利用小波變換對(duì)MRI大腦圖像進(jìn)行多尺度下的自動(dòng)閾值處理,實(shí)現(xiàn)大腦灰質(zhì)與白質(zhì)的分割。方法 首先將MRI大腦圖像去噪,接著進(jìn)行預(yù)分割以去除非腦組織,余下的腦實(shí)質(zhì)部分選擇sym4小波函數(shù)對(duì)其一維直方圖信號(hào)進(jìn)行不同層次的小波系數(shù)的分解,實(shí)現(xiàn)多尺度下的自動(dòng)閾值分割,從而提取腦實(shí)質(zhì)中的灰質(zhì)和白質(zhì)。經(jīng)過(guò)圖像的后處理,以錯(cuò)誤分割的百分比作為分割結(jié)果的評(píng)判標(biāo)準(zhǔn)。結(jié)果 該方法能正確分離白質(zhì)和灰質(zhì),對(duì)多幅MRI大腦圖像重復(fù)實(shí)驗(yàn),計(jì)算得到的像素差異百分比不超過(guò)3.7%,錯(cuò)誤分割的百分比在允許范圍內(nèi)。結(jié)論 該方法對(duì)于MRI大腦的灰白質(zhì)分割具有一定的有效性,且操作簡(jiǎn)單、快速,分割效果理想。但由于小波閾值分割法的單一性,分割過(guò)程仍有人工干涉,分割結(jié)果也存在一定的過(guò)分割現(xiàn)象,應(yīng)在此方法的基礎(chǔ)上進(jìn)一步研究和完善。

Objective To realize the segmentation of brain grey matter and white matter of a MRI brain image accurately by means of wavelet transformation which could automatically gain the threshold with multi-scale decomposition. Methods Firstly,The MRI brain image was denoised and pre-segmented to remove non-brain tissue. Then one-dimensional histogram signal of the rest brain tissue was decomposed by different levels of wavelet coefficients to realize automatically threshold segmentation under multi-scale,thus the brain grey matter and white matter were extracted. Finally,the results were evaluated by the percentage of error segmentation after the post-treatment. Results The expriment results showed that brain grey matter and white matter were correctly segmented,and the max percentage of error segmentation was 3.7%,which was within the allowable range. Conclusions The method is effective,easy and fast in segmentation for brain grey matter and white matter of a MRI image. However,due to the simplicity of the threshold segmentation with wavelet transformation,the whole process does not work without human intervention and there is some over-segmentation in the results. Further study and improvement should be made based on this method.

參考文獻(xiàn):

[1]余學(xué)飛.基于模糊理論的醫(yī)學(xué)圖像分割算法研究[D].廣州:南方醫(yī)科大學(xué),2009.
Yu Xuefei.Research about algorithm based on fuzzy theory for medical image segmentation[D]. Guangzhou:Southern Medical University,2009.
[2]Lipton Richard J. DNA Solution of Hard Computational Problems[J]. Science,1995, 268 (4):542-545.
[3]Pemmaraju S,Mitra S,Shieh Y,et al. Multiresolution waveletdecomposition and neur o-fuzzy clustering for segmentation of radiographic images[J]. Proceedings of the Eighth Annual IEEE Symposium on Computer-Based Med-I cal Systems (CBMS. 95). 1995:142-149.
[4]Olivo JC.Automatic threshold selection using the Wavelet transform. CVGIP-GMIP,1994,56(3):205-218.
[5]邢凡,樊瑜瑾.基于小波變換多閾值彩色鐵譜圖像的分割方法[J].潤(rùn)滑與密封,2008,33(7):69-72.
Xing Fan,F(xiàn)an Yujin. Multi-threshould segmentation method based on wavelet transformation for color ferrography image[J]. Lubrication and Sealing,2008,33(7):69-72.
[6]何軍寶.腦部核磁共振圖像的模糊均值抗噪分割算法[D].武漢:華中科技大學(xué),2006.
He Junbao. Fuzzy c-means with entinoise segmentation algorithm for MRI brain image[D]. Wuhan:Huazhong University of Science and Technology,2006.
[7]Rajaqakse JC. Statistical approach to segmentation of single-channel cerebral M R images[J]. IEEE Trans Med Imaging,1997,16 (2):176-186.
[8]王建中.核磁共振腦圖像分割方法的研究[D].長(zhǎng)春:東北師范大學(xué),2007.
Wang Jianzhong. Research on methods for segmentation of MRI brain images[D]. Changchun:Northeast Normal University,2007.
[9]聶生東,章魯,顧順德,等. 磁共振圖像的分割[J]. 國(guó)外醫(yī)學(xué)生物醫(yī)學(xué)工程分冊(cè),1999,22(6):23-25.
Nie Shengdong,Zhang Lu,Gu Shunde,et al. Segmentation of brain images[J]. Foreign Medical Sciences:Biomedical Engineering,1999,22(6):23-25.
[10]劉靜. 基于小波變換的圖像分割技術(shù)研究[D]. 濟(jì)南:山東大學(xué),2005.
Liu Jing. Reaseach on teconology for images segmentation based on wavelet transformation[D]. Jinan:Shandong University,2005.
[11]Reddick WE,Glass JO,Cook EN,et al.Automated segmentation and classification of multi spectral magnetic  images using artificia  neural networks[J]. IEEE  Trans Med Imaging,1997,16(6):911-918.
[12]Li Bai, Yihui Liu, Dorothee Auer, Paul Morgan. Automatic Segmentation of Putamen from Brain MRI[J]. Technology & Automation,2001,19(8):679-698.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]