[1]Jemal A,Bray F,Center MM,et al.Global cancer statistics[J].CA Cancer J Clin,2011,61(2):69-90.
[2]郭鋒杰,范亞光,喬友林,等.HPV和肺癌關(guān)系的研究進(jìn)展[J].中國肺癌雜志,2012,15(3):191-194.
Guo Fengjie,F(xiàn)an Yaguang,Qiao Youlin,et al.Study advance of relationship between HPV and lung cancer[J].Chinese Journal of Lung Cancer,2012,15(3):191-194.
[3]韋春暉.肺癌早期診斷進(jìn)展[J].臨床肺科雜志,2010,15(8):1136-1138.
Wei Chunhui.The early diagnosis progress of lung cancer[J].Journal of Clinical Pulmonary Medicine,2010,15(8): 1136-1138.
[4]戴世明.CT技術(shù)在早期肺癌診斷中的應(yīng)用[J].臨床肺科雜志,2012,17(2):330-331.
Dai Shiming.The application of CT technology in diagnosis of early stage lung cancer[J].Journal of Clinical Pulmonary Medicine,2012,17(2):330-331.
[5]付杰,董云.50例周圍型肺癌的CT診斷價(jià)值分析[J].中國醫(yī)藥科學(xué),2011,1(21):98-99.
Fu Lei, Dong Yun. The analysis on CT technology in dignosis of 50 cases of peripheral lung cancer[J].China Medicine and Pharmacy,2011,1(21):98-99.
[6]Wang H,Guo XH,Jia ZW,et al.Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image[J].European Journal of Radiology,2010,74(1):124-129.
[7]吳海豐,劉韞寧,郭秀花,等.Curvelet變換在醫(yī)學(xué)圖像處理中的應(yīng)用現(xiàn)況[J].北京生物醫(yī)學(xué)工程,2010,29(4):432-435.
Wu Haifeng,Liu Yunning,Guo Xiuhua,et al.The application status of Curvelet transformation in medical image processing[J].Beijing Biomedical Engineering,2010,29(4):432-435.
[8]Dettori L,Semler L.A comparison of wavelet,ridgelet,and curvelet-based texture classification algorithms in computed tomography.Computers in Biology and Medicine,2009,(37): 486-498.
[9]Chen M,Zhang JX.Color segmentation of nuclei of blood cell using support vector machine[J].Journal of Optoelectronics Laser,2006,17(4): 479-483.
[10]Zheng Z,Zhang YX,Hu YX.Investigation of eye gaze based on independent component analysis and support vector machine[J].Journal of Optoelectronics Laser,2007,18(7): 491-494.
[11]王瓛,郭秀花,李坤成,等.良惡性肺小結(jié)節(jié)CT圖像基于灰度共生矩陣10種紋理特征研究[J].北京生物醫(yī)學(xué)工程,2008,27(6):561-564,608.
Wang Huan,Guo Xiuhua,Li Kuncheng,et al.CT Images’10 texture features of small solitary pulmonary nodules patients using gray level co-occurrence matrix[J].Beijing Biomedical Engineering,2008,27(6):561-564,608.
[12]吳海豐,劉韞寧,孫濤,等.基于Curvelet變換提取肺結(jié)節(jié)圖像紋理特征構(gòu)建BP神經(jīng)網(wǎng)絡(luò)[J].北京生物醫(yī)學(xué)工程,2011,30(5): 471-473.
Wu Haifeng,Liu Yunning,Sun Tao,et al.Classification of malignant and benign pulmonary nodules in CT image based on Curvelet transformation[J].Beijing Biomedical Engineering,2011,30(5): 471-473.
[13]Wu HF,Sun T,Guo XH,et al.Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography[J/OL].Journal of Digital Imaging. DOI: 10.1007/s10278-012-9547-6.
|