51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
阿爾茨海默病的MR圖像三維紋理的灰度游程分析

Gray level run length matrices analysis of MR images in Alzheimer’s disease

作者: 夏翃  劉衛(wèi)芳  童隆正  王旭  周震 
單位:首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京100069)
關(guān)鍵詞: 阿爾茨海默病;  MRI;  胼胝體;  灰度游程長(zhǎng)矩陣 
分類號(hào):
出版年·卷·期(頁(yè)碼):2013·32·6(575-578)
摘要:

目的 灰度游程長(zhǎng)矩陣參數(shù)可以反映圖像紋理的粗細(xì)及均勻程度。本研究采用該方法研究阿爾茨海默病

(Alzheimer’s disease, AD)患者腦MR圖像中胼胝體的三維紋理特征,以反映AD患者胼胝體部位的病理變化

,從而探索該紋理特征分析方法在該疾病診斷中的應(yīng)用。方法 選取18例AD患者及18例健康對(duì)照者,采用灰

度游程長(zhǎng)矩陣提取每位受試者胼胝體部位的4個(gè)三維紋理特征參數(shù):短游程因子、長(zhǎng)游程因子、灰度不均勻

度和游程長(zhǎng)不均勻度。比較兩組間各紋理特征的差異,并分析這些紋理參數(shù)與臨床廣泛應(yīng)用的簡(jiǎn)易智能狀態(tài)

檢查量表(mini-mental state examination, MMSE)評(píng)分之間的相關(guān)性。結(jié)果 4個(gè)紋理參數(shù)兩組相比較均有

顯著性差異,且與MMSE評(píng)分均具有相關(guān)性。結(jié)論 基于三維紋理特征的灰度游程分析法能在一定程度上反映

出AD患者胼胝體部位的病理變化,可能用于該疾病的臨床診斷。

Objective To explore the 3D texture features of corpus callosum in magnetic

resonance images from the patients with Alzheimer’s disease and to discuss the application of

texture features in diagnosis of AD. Methods T1-weighted MRIs of 18 AD patients and 18 normal

controls were selected. 3D texture features of the corpus callosum, including short run

emphasis, long run emphasis, grey level nonuniformity and run length nonuniformity, were

extracted from the run length matrix. Finally, statistic significance was tested between the

two groups, and the correlations between the parameters and the widely used method—mini-

mental state examination (MMSE) were calculated. Results The differences of the 3D texture

features were significant between the two groups, and they were correlated with MMSE scores.

Conclusions 3D texture analysis can reflect the pathological changes of corpus callosum in

patients with AD and may be helpful to the diagnosis.

參考文獻(xiàn):

[1]Alzheimer’s Disease International. World Alzheimer Report [R]. Alzheimer’s Disease

International, 2012.
[2]Zhang Zhenxin, Zahne GEP, Román GC, et al. Dementia subtypes in China: prevalence in

Beijing,Xian,Shanghai,and Chengdu [J]. Archives of Neurology, 2005, 62:447-53.
[3]中華醫(yī)學(xué)會(huì)精神分會(huì). CCMD-3中國(guó)精神障礙分類與診斷標(biāo)準(zhǔn)第3版[M]. 濟(jì)南:山東科學(xué)技術(shù)出版社,

2001: 87-89.
Chinese Society of Psychiatry. CCMD-3 Chinese classification and diagnostic criteria of mental

disorders. Jinan : Shandong Science & Technology Press, 2001: 87-89.
[4]de Oliveira MS, Balthazar MLF, D’Abreu A, et al. MR imaging texture analysis of the

corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease

[J]. AJNR, 2011, 32: 60-66.

[5]Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images[J]. Clinical

Radiology, 2004,59(12): 1061-1069.
[6]Georgiadis JP,Cavouras D,Kalatzis I,et al. Enhancing the discrimination accuracy

between metastases, gliomas and meningiomas on brain MRI by volumetric textural feamres and

ensemble pattem recognition methods[J]. Magnetic Resonance Imaging, 2009, 27: 120-130.
[7] El-Baz A, Casanova MF, Gimel’farb G, et a1. Autism diagnostics by 3D texture analysis

of cerebral white matter gyrification[C] . International Conference on Medical Image

Computing and Computer—Assisted Intervention(MICCAI 2007), 2007,10( 2): 882-890.
[8]Mahmoud-Ghoneima D, Toussaintb G, Constans JM, et al. Three dimensional texture analysis

in MRI: a preliminary evaluation in gliomas[J]. Magnetic Resonance Imaging, 2003, 21: 983-

987.
[9]劉衛(wèi)芳,夏翃,周震,等.多發(fā)性硬化患者腦磁共振圖像的紋理分析[J]. 中國(guó)醫(yī)學(xué)影像學(xué)雜志,

2013, 21(4): 297-300.
Liu Weifang, Xia Hong, Zhou Zhen, et al. Texture analysis on magnetic resonance imaging in

patients with multiple sclerosis[J]. Chinese Journal of Medical Imaging, 2013, 21(4): 297-

300.
[10]Galloway M  M. Texture analysis using gray level run lengths. Comput[J]. Graphics

Image Process,1975, 4: 172-179.
[11]Wagner F,  Gryanik A, Schulz-Wendtland, et al. 3D Characterization of texture:

evaluation for the potential application in mammographic mass diagnosis[J]. Biomed Tech,

2012, 57: 490-493.
[12]Arunadevi B,Deepa SN. Texture analysis for 3D classification of brain tumor tissues[J]

. Przeglad Elektrotechniczny, ISSN 0033-2097, R. 89 NR 4/2013.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]