51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于胸部CT圖像的肺結(jié)節(jié)分割

Lung nodule segmentation based on thoracic CT images

作者: 齊守良  司廣磊  岳勇  孟現(xiàn)峰  蔡金鳳  康雁                  
單位:                      東北大學(xué)中荷生物醫(yī)學(xué)與信息工程學(xué)院(沈陽(yáng)110819)        
關(guān)鍵詞:                     肺結(jié)節(jié)分割;肺癌;計(jì)算機(jī)斷層成像;計(jì)算機(jī)輔助診斷          
分類(lèi)號(hào):
出版年·卷·期(頁(yè)碼):2014·33·1(29-34)
摘要:

目的 提出一種從胸部CT圖像中分割提取多種類(lèi)型肺結(jié)節(jié)的算法,輔助肺癌診斷和療效評(píng)估。方法  首先由放射科醫(yī)生確定種子點(diǎn)和目標(biāo)容積區(qū)域,再根據(jù)初分割結(jié)果自動(dòng)識(shí)別非肺壁粘連結(jié)節(jié)和肺壁粘連結(jié)節(jié)。然后采用多閾值結(jié)合距離變換的方法分割非肺壁粘連結(jié)節(jié),光線(xiàn)投射和直線(xiàn)擬合分割肺壁粘連結(jié)節(jié)。最后,將算法應(yīng)用于85組患者數(shù)據(jù)(232個(gè)肺結(jié)節(jié)),并由高年資放射科醫(yī)生評(píng)價(jià)分割結(jié)果的準(zhǔn)確性。結(jié)果 本文算法魯棒性強(qiáng),能準(zhǔn)確判別肺壁粘連和非肺壁粘連結(jié)節(jié),從而適用于孤立、血管粘連、毛玻璃和肺壁粘連結(jié)節(jié)的提取。測(cè)試的232個(gè)結(jié)節(jié)中無(wú)異常發(fā)生,且分割速度較快。經(jīng)放射醫(yī)生評(píng)價(jià),平均準(zhǔn)確率達(dá)90%。結(jié)論 本文算法可以從胸部CT圖像中分割提取4種類(lèi)型肺結(jié)節(jié),魯棒性、準(zhǔn)確性和速度均可滿(mǎn)足實(shí)際臨床需求,對(duì)肺癌篩查、診斷和療效評(píng)估具有重要價(jià)值。

Objective To propose an algorithm that can extract certain types of lung nodule from thoracic CT images in order to aid the screening and treatment evaluation of lung cancer. Methods In the algorithm,after the radiologist determines the seed point and the volume of interest,the nodule is identified as non-juxta-pleural or juxta-pleural based on the raw segmentation result. Then a hybrid method of multi-level thresholding combined with distance transform is used to extract non-juxta-pleural nodule,ray casting and line fitting are applied for juxta-pleural nodule. Finally,the datasets including 85 patients (232 nodules) are utilized to evaluate the proposed algorithm,and the accuracy is evaluated by one experienced radiologist. Results This algorithm,with strong adaptive capacity,can recognize non-juxta-pleural and juxta-pleural nodules accurately,and extract the isolated solid,juxta-vascular,ground glass opacities and juxta-pleural nodules properly. The average segmentation accuracy exceeds 90% with high segmentation speed. Conclusions This algorithm can extract certain kinds of lung nodules from thoracic CT images,whose robustness,accuracy and efficiency can satisfy clinic requirements,and is helpful for lung cancer screening,diagnosis and treatment evaluation.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]