51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于數(shù)據(jù)挖掘技術的表面增強拉曼光譜診斷肺癌的研究

Study of surface enhanced Raman spectroscopy based on data mining in the diagnosis of lung cancer

作者: 劉文艷  陳安宇  王燕  華琳  王艷  鄭文新  劉春偉  郭潯  汪泓                  
單位:                      首都醫(yī)科大學生物醫(yī)學工程學院(北京100069)        
關鍵詞:                     拉曼光譜;唾液;肺癌;數(shù)據(jù)挖掘          
分類號:
出版年·卷·期(頁碼):2014·33·1(35-40)
摘要:

目的 探討唾液表面增強拉曼光譜診斷肺癌的可行性,并應用數(shù)據(jù)挖掘技術得出判別肺癌的較優(yōu)模型。方法 利用便攜式表面增強拉曼光譜檢測系統(tǒng)對18個健康人和59個肺癌患者的唾液樣本進行光譜檢測和分析,用數(shù)據(jù)挖掘技術建立SVM、隨機森林模型,與傳統(tǒng)的Fisher判別模型進行比較,探討各個模型對肺癌輔助診斷的性能。結果 SVM和隨機森林模型的各項診斷指標都高于Fisher判別分析,二者是判別肺癌的較優(yōu)分類模型。結論 研究結果表明,基于數(shù)據(jù)挖掘技術的唾液表面增強拉曼光譜分析方法可能成為一種新型的肺癌診斷工具。

Objective To investigate the potential feasibility of lung cancer diagnosis with saliva surface-enhanced Raman spectroscopy, and to obtain the relatively optimal diagnosis model of lung cancer by data mining.Methods In this paper, saliva samples of 18 healthy individuals and 59 lung cancer patients were measured and analyzed the spectra by portable SERS detection system.We established the support vector machine (SVM) and random forests by data mining technology, compared with traditional Fisher discriminant model, and then discussed the auxiliary diagnosis efficiency for lung cancer with the models.Results The diagnosis indexes of the SVM and random forest were higher than Fisher discriminant analysis.We considered SVM and random forest were the optimal classification models for the diagnosis of lung cancer.Conclusions The results showed that the study of surface enhanced Raman spectroscopy based on data mining might be a new type tool for the diagnosis of lung cancer.

參考文獻:

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]