51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于數(shù)字胸片小波紋理特征的塵肺病早期診斷方法研究

Early diagnosis of pneumoconiosis on digital radiographs based on wavelet transform-derived texture features

作者: 朱碧云  陳卉  陳步東  張寬                  
單位:                      首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京100069)        
關(guān)鍵詞:                     塵肺病;小波變換;熵;特征選擇;支持向量機(jī)          
分類號:
出版年·卷·期(頁碼):2014·33·2(148-152)
摘要:

目的 探討利用基于小波變換的熵紋理特征進(jìn)行塵肺病診斷的方法,并研究相關(guān)的分類技術(shù)。方法 對70名健康體檢者和40名塵肺病患者的數(shù)字X射線攝影(digital radiography,DR)圖像進(jìn)行紋理分析,提取小波熵紋理特征,并利用決策樹進(jìn)行特征選擇。選取不同核函數(shù)的支持向量機(jī)(support vector machines,SVM)對DR胸片進(jìn)行分類,通過5折交叉驗(yàn)證估計(jì)診斷分類的性能并進(jìn)行評價(jià)。結(jié)果 對DR圖像做8次小波分解后提取8個(gè)小波熵紋理特征(特征全集),其中6個(gè)經(jīng)過特征選擇組成特征子集。應(yīng)用SVM進(jìn)行分類時(shí),基于特征子集的分類結(jié)果均好于基于特征全集的分類結(jié)果。線性核函數(shù)SVM的分類效果好于其他核函數(shù)SVM的分類效果,準(zhǔn)確率達(dá)84.6%,ROC曲線下面積為0.88±0.04。結(jié)論 利用SVM以DR圖像的小波熵為特征進(jìn)行塵肺病診斷有較高水平,有助于塵肺病的早期診斷。

Objective To investigate the early diagnosis of pneumoconiosis on digital radiographs by means of wavelet transform-derived entropy and the related technologies of classification.Methods Wavelet transform-derived entropies were extracted from the digital X-ray radiographies(DRs) of 70 normal persons and 40 pneumoconiosis patients and were selected by decision tree.Support vector machines(SVMs) with different kernel functions were adopted to distinguish pneumoconiosis DRs from normal DRs.The classification performance was estimated and evaluated through 5-fold cross validation.Results The DR images were wavelet-discomposed for 8 times,resulting in 8 wavelet entropies to form the feature full-set,and six were selected to form the feature subset.The classification performances based on the feature subset were better than those based on the feature full-set when classification was done with SVMs.SVM with linear kernel function performed better than SVMs with polynomial and Gauss kernel functions,with accuracy of 84.6% and an area under the ROC curve of 0.88±0.04.Conclusions The early diagnosis of pneumoconiosis based on wavelet transform-derived texture features with SVM is of a high level.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]