51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于運(yùn)動(dòng)量的神經(jīng)網(wǎng)絡(luò)心率預(yù)測(cè)器的設(shè)計(jì)及對(duì)比研究

Design and comparison research of heart rate prediction model based on physical activities using neural network

作者: 肖峰  丁明躍  尉遲明 
單位:                                 華中科技大學(xué)生命科學(xué)與技術(shù)學(xué)院(武漢430074)            
關(guān)鍵詞:                               心率預(yù)測(cè);運(yùn)動(dòng)量;神經(jīng)網(wǎng)絡(luò)               
分類(lèi)號(hào):
出版年·卷·期(頁(yè)碼):2014·33·4(355-364)
摘要:

目的 利用神經(jīng)網(wǎng)絡(luò)建立有效的基于運(yùn)動(dòng)量的心率預(yù)測(cè)模型,分析運(yùn)動(dòng)量與心率變化之間的關(guān)系。方法 通過(guò)對(duì)運(yùn)動(dòng)量信號(hào)進(jìn)行不同分析(預(yù)處理),并采用不同的神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)及學(xué)習(xí)算法,單步或多步預(yù)測(cè)方式建立了6個(gè)預(yù)測(cè)模型,然后利用采集到的真實(shí)數(shù)據(jù)進(jìn)行測(cè)試,并對(duì)各模型結(jié)構(gòu)框架及預(yù)測(cè)結(jié)果進(jìn)行了對(duì)比。結(jié)果 建立的模型平均預(yù)測(cè)誤差均保持在一個(gè)很小的范圍內(nèi)。結(jié)論 利用神經(jīng)網(wǎng)絡(luò)建立心率預(yù)測(cè)模型可有效地反映運(yùn)動(dòng)量如何影響心率變化。對(duì)比結(jié)果表明,在單步預(yù)測(cè)中,利用神經(jīng)網(wǎng)絡(luò)拓?fù)湓鰪?qiáng)技術(shù)(neuro-evolution of augmenting topologies, NEAT)建立的心率預(yù)測(cè)模型可達(dá)到最佳的預(yù)測(cè)效果,而多步預(yù)測(cè)利用Adams-Bashforth技術(shù)得到的預(yù)測(cè)結(jié)果是最好的。

Objective To find the relationship between physical activities (PA) and HR change by building an effective PA-based HR prediction model.Methods Six models were built according to different PA signal analysis scheme (preprocessing), different NN structures and training algorithms, and different prediction steps (single-step or multi-step).Then the models were tested by using the data collected from real life and comparisons were made between the results.Results The average prediction errors of the models were restricted in a small range.Conclusions The experimental results demonstrated that models built by NN could effectively reflect how PA affect HR, and the comparison results illustrated that the model built by neuro-evolution of augmenting topologies (NEAT) got the best performance in single-step prediction.And Adams-Bashforth technique was the best choice in multi-step prediction.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]