51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于DTI影像圖論分析的正常老化認知表現(xiàn)預(yù)測模型

A prediction model for cognitive performance from diffusion tensor imaging with graph theory in health ageing

作者: 員銳娟  吳水才  林嵐  趙一平  林仲志  黃楚中  林慶波 
單位:                      北京工業(yè)大學(xué)生命科學(xué)與生物工程學(xué)院(北京100124)        
關(guān)鍵詞:                     磁共振擴散張量影像;圖論;認知表現(xiàn);機器學(xué)習(xí)          
分類號:
出版年·卷·期(頁碼):2014·33·6(575-582)
摘要:

           目的 以磁共振擴散張量影像(diffusion tensor imaging, DTI)為基礎(chǔ)進行大腦結(jié)構(gòu)網(wǎng)絡(luò)拓撲屬性分析,選擇與認知表現(xiàn)分數(shù)相關(guān)性較大的結(jié)構(gòu)網(wǎng)絡(luò)特征,并基于這些特征建立認知表現(xiàn)分數(shù)預(yù)測模型,藉以客觀地估測老年人的大腦認知能力。方法 對94例正常老化的DTI影像進行結(jié)構(gòu)腦網(wǎng)絡(luò)構(gòu)建,采用圖論法分析結(jié)構(gòu)連接矩陣,提取結(jié)構(gòu)網(wǎng)絡(luò)的特征,并將所有特征與受試者的簡單智能狀態(tài)檢查量表(mini-mental status examination, MMSE)分數(shù)進行相關(guān)性分析,選取出與大腦認知高度相關(guān)的網(wǎng)絡(luò)特征,再基于這些特征建立5種分析模型,預(yù)測受試者的認知表現(xiàn)分數(shù),以進一步分析模型的預(yù)測效能。結(jié)果 通過相關(guān)性分析,在相關(guān)系數(shù)大于0.22且P值小于0.05的條件下,選取出與大腦認知高度相關(guān)的30個特征,這些特征分布在 AAL(automated anatomical labeling)圖譜中的12個腦區(qū)。而在模型建立與效能分析部分,以高斯回歸模型的效能最佳,其訓(xùn)練組相關(guān)系數(shù)達0.89,預(yù)測誤差最小為2.01,對受試者的認知表現(xiàn)分數(shù)預(yù)測較準確。結(jié)論 利用結(jié)構(gòu)腦網(wǎng)絡(luò)度量指標作為生物標記指針可建立正常老化認知功能預(yù)測模型,且能有效預(yù)測正常老年人的認知表現(xiàn)分數(shù)。    

       Objective On the basis of diffusion tensor imaging (DTI), we analyzed the properties of structural brain network by selecting the characteristics of structural network which were higher correlated with cognitive performance to estimate the prediction models. Based on the estimated models, the score of cognitive performance of subjects could be evaluated objectively according to their magnetic resonance imaging (MRI). Methods We used diffusion tensor imaging to construct brain structural network and connection matrix for 94 healthy elders. In order to obtain the characteristics of structural brain network, we analyzed connection matrices by using graph theory and diffusion tractography. We selected significant features by the correlation analysis between the characteristics of brain network and subject’s mini-mental state examination (MMSE) score. These features would then be used to estimate the models based on five kinds of machine learning algorithm respectively to predict the cognitive performance. Finally, the performance of the five prediction models would be analyzed and discussed. Results Under the condition of the correlation coefficient greater than 0.22 and P value less than 0.05, thirty characteristics of brain network were selected as features and the related anatomical regions located in 12 brain areas according to the automated anatomical labeling (AAL) template. Among the 5 algorithms, Gaussian processes model was more accurate due to the higher correlation coefficient of 0.89 and the lower mean absolute error of 2.01. Conclusions We successfully established prediction model based on brain structural network metrics derived from DTI which could be employed to effectively predict subject’s cognitive performance score.

參考文獻:

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]