51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
上氣道內(nèi)流動(dòng)現(xiàn)象與壓力分布模擬

Simulations of flow and pressure distribution in the upper airway

作者: 王建霞  安云強(qiáng)  王輝  黃亞奇                          
單位:                                 首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院,臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室(北京 100069)            
關(guān)鍵詞:                               計(jì)算流體力學(xué)模擬;實(shí)體模型;上氣道;阻塞性睡眠呼吸暫停              
分類號(hào):
出版年·卷·期(頁(yè)碼):2015·34·2(118-124)
摘要:

目的  用計(jì)算流體力學(xué)模擬的方法和體外模型實(shí)驗(yàn)的手段,研究呼吸時(shí)真實(shí)結(jié)構(gòu)的上氣道內(nèi)的流動(dòng)狀態(tài)和壓力分布,同時(shí)驗(yàn)證數(shù)值模擬模型的準(zhǔn)確性。方法 首先基于磁共振圖像,借助Mimics軟件重建上氣道三維結(jié)構(gòu)。在此真實(shí)幾何結(jié)構(gòu)基礎(chǔ)上,建立上呼吸道內(nèi)流動(dòng)的有限元分析模型,以及制作相應(yīng)的實(shí)體模型。模擬并測(cè)量呼吸流量為200、400和600mL/s時(shí)的情況,并將數(shù)值模型預(yù)測(cè)的壁面壓力分布與實(shí)測(cè)結(jié)果比較。結(jié)果 如果氣道內(nèi)氣流流量相同,吸氣時(shí)氣道兩端的壓差比呼氣時(shí)大,即吸氣時(shí)氣道阻力比呼氣時(shí)大。不同點(diǎn)壓力分布的數(shù)值計(jì)算結(jié)果與實(shí)體模型測(cè)量結(jié)果一致。數(shù)值模擬結(jié)果表明,吸氣時(shí)氣道懸雍垂以及會(huì)厭后的舌后區(qū)域流動(dòng)速度較高,懸雍垂下舌后區(qū)有渦旋產(chǎn)生。呼氣時(shí)矢狀位鼻咽頂端靠近后壁處,冠狀位鼻咽、會(huì)厭下口咽處均有渦旋產(chǎn)生。結(jié)論 數(shù)值模型可以準(zhǔn)確地模擬上氣道的流動(dòng)狀態(tài)和壓力分布,直觀地反映上氣道內(nèi)流動(dòng)特點(diǎn)。作為非侵入式的工具,氣道模型和數(shù)值模擬可以在探索阻塞性睡眠呼吸暫停(obstructive sleep apnea, OSA)的發(fā)病機(jī)制和有效治療方法的過(guò)程中發(fā)揮重要作用。

Objective The aim of this study was to investigate the flow and pressure distributions in the upper airway during respiration using computational fluid dynamics methods and in vitro experiments, and to test the accuracy of the numerical models. Methods An anatomically accurate finite element model of the human upper airway was constructed from magnetic resonance images, and an identical physical model of the same airway was built. Numerical simulations and experimental measurements were performed at flow rates of 200ml/s, 400ml/s, and 600ml/s, and the model-predicted distributions of the wall static pressure were compared with measured results. Results When the flow flux was the same, a larger pressure drop between the two ends of the upper airway was required during inspiration compared to expiration. That means a larger flow resistance during inspiration compared to expiration. The numerical predictions of the wall pressure at different locations of the upper airway were consistent with the measured data from the physical model. Numerical results showed high velocities in the retropalatal and retroglossal regions near the epiglottis during inspiration. Vortex flows occurred at the region below the uvula. During expiration, vortex flows could be observed at the region near the posterior top of the nasopharynx wall in the midsagittal plane, and in the nasopharynx and the oropharynx below the uvula in the coronal plane. Conclusions Numerical models can be used to simulate the flow field and pressure distribution accurately, as well as to show the flow characteristics in the upper airway intuitively. As noninvasive methods, in vitro models and numerical simulations could play an important role in the study on the pathogenesis and effective treatment methods of obstructive sleep apnea.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]