51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于雙稀疏字典的醫(yī)學(xué)圖像融合算法及在腦血管疾病診斷中的應(yīng)用

Medical image fusion algorithm based on double sparse representationand the application in diagnosis of cerebrovascular disease

作者: 高珊  邱天爽  易梅  劉文紅                                 
單位:                                            大連理工大學(xué)電子信息與電氣工程學(xué)部(遼寧大連116024)                
關(guān)鍵詞:                                         圖像融合;稀疏字典;計(jì)算機(jī)斷層掃描;磁共振成像                 
分類號(hào):
出版年·卷·期(頁碼):2015·34·3(239-243)
摘要:

目的 通過圖像融合方法結(jié)合解剖和功能醫(yī)學(xué)圖像以提供更多有用的信息并輔助醫(yī)生診斷。方法 利用稀疏表示能很好地反映圖像特征的優(yōu)勢(shì)。首先,選取醫(yī)院腦梗死和腦出血的CT和MRI的臨床圖像,采用雙稀疏字典算法得到稀疏字典,再通過結(jié)合空間域信息的最大選擇法作為融合規(guī)則對(duì)其進(jìn)行融合,并與基于主成分分析(principal component analysis, PCA)和離散小波變換(discrete wavelet transform, DWT)方法的圖像融合結(jié)果在主觀方面以及客觀方面的QAB/F和Piella指標(biāo)上進(jìn)行比較。結(jié)果 本文提出的方法所獲得的融合圖像主觀評(píng)價(jià)優(yōu)于另外兩種方法。QAB/F和Piella的均值分別為0.9139和0.7213,客觀評(píng)價(jià)指標(biāo)也優(yōu)于另外兩種方法。結(jié)論 基于雙稀疏字典的圖像融合算法得到的融合圖像更清晰,對(duì)比度更高,并且特征保留效果更好,有助于醫(yī)生的診斷。

Objective We use the method of image fusion combining anatomical and functional medical images to provide more useful information and to help the doctors in diagnosis. Methods Sparse representation can reflect the advantage of the image feature well. First, the CT and MRI images of cerebral infarction and cerebral hemorrhage from the hospital are selected, and the algorithm based on double sparse dictionary is used to obtain the sparse dictionary. Then the method of max selection with information of spatial domain as the fusion rule fuses the selected clinical images. Finally, the results of the proposed method are compared with the results of PCA method and DWT method in the subjective aspect and the objective aspect on the indices of QAB/F and Piella. Results Subjective evaluations of the fusion images obtained from the proposed method are better than the other two methods, and the mean values of QAB/F and Piella in the objective aspect are 0.9139 and 0.7213, which are superior to the other two methods. Conclusions The fusion images obtained from the proposed method based on sparse dictionary are clearer, with higher contrast, and have more features of source images, which is helpful in diagnosis.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]