51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
結(jié)合置信連接度的自適應(yīng)模糊連接度的MRI圖像中丘腦分割算法研究

Segmentation for thalamus and its substructures based on adaptive fuzzy connectedness combined with confidence connectedness

作者: 王倩  楊春蘭  吳水才                                         
單位:                                                       北京工業(yè)大學(xué)生命科學(xué)與生物工程學(xué)院(北京100124)                    
關(guān)鍵詞:                                                   模糊連接度;置信連接度;圖像分割;丘腦                     
分類號:
出版年·卷·期(頁碼):2015·34·3(244-250)
摘要:

目的  立體定向神經(jīng)外科手術(shù)中,丘腦及其子結(jié)構(gòu)神經(jīng)核團作為靶區(qū),常被用于治療癲癇和錐體外系疾病。利用計算機對丘腦神經(jīng)核團進行分割,對于神經(jīng)外科疾病的診斷與治療具有重要的研究價值。為提高丘腦神經(jīng)核團的分割精度,簡化人工操作,減少人工干預(yù),避免主觀影響,本文提出一種結(jié)合置信連接度的自適應(yīng)模糊連接度混合算法,用于分割丘腦結(jié)構(gòu)。方法 本文算法在基于模糊連接度的框架內(nèi)增加圖像梯度特征,采用自適應(yīng)權(quán)重及自動選取感興趣區(qū)域的方式,對10例人腦MRI圖像數(shù)據(jù)的丘腦結(jié)構(gòu)進行分割。結(jié)果 實驗結(jié)果與專家指導(dǎo)下的手工分割結(jié)果進行比較,并對兩者之間的相似度進行量化比較。結(jié)果表明該算法在減少人工干預(yù)的同時保證了較高的準(zhǔn)確率。結(jié)論 結(jié)合置信連接度的自適應(yīng)模糊連接度丘腦及其子結(jié)構(gòu)分割算法在計算速度和精度上均優(yōu)于傳統(tǒng)模糊連接度算法。

Objective In stereotactic neurosurgeries,the thalamus and its substructure nerve nuclei have been regarded as the target areas, which can be usually used to treat epilepsy and extrapyramidal diseases. The utilization of computers for the segmentation of thalamus nerve nuclei has significant value of research in the diagnosis and treatment of neurosurgical diseases. In this paper, an algorithm based on adaptive fuzzy connectedness combined with confidence connectedness is proposed to improve the accuracy of thalamus segmentation result, simplify manual operation, reduce human intervention and avoid subjective influence. Methods This method gains the image gradient feature in the original framework based on the theory of fuzzy connectedness. Adaptive weighting and the way of automatically selecting interested area can reduce manual intervention. The thalamus structures of 10 cases of human brain MRI image data are segmented. Results The experimental results are compared with the results of the manual segmentation guided by experts. The similarity degree of them is calculated for quantitative comparison. The accuracy of this algorithm is higher, with human intervention reduced. Conclusions The adaptive fuzzy connectedness combined with confidence connectedness algorithm is better than traditional theory of fuzzy connectedness in computation speed and accuracy.
 

參考文獻:

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]