51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
腦機(jī)接口中一種多類運(yùn)動(dòng)想象任務(wù)識(shí)別新方法

A novel recognition method of multi-class motor imagery tasks in brain computer interfaces

作者: 韓志軍  楊幫華  何美燕  劉麗                          
單位:                                 上海大學(xué)機(jī)電工程與自動(dòng)化學(xué)院自動(dòng)化系(上海200072)            
關(guān)鍵詞:                               腦機(jī)接口;RLS自適應(yīng)濾波器;獨(dú)立分量分析;共同空間模式;增量式支持向量機(jī);樣本熵              
分類號(hào):
出版年·卷·期(頁碼):2015·34·3(256-260)
摘要:

目的 針對(duì)腦機(jī)接口中三類運(yùn)動(dòng)想象任務(wù),提出一種最小二乘法自適應(yīng)濾波結(jié)合獨(dú)立成分分析以及樣本熵(RLS-ICA-SampEn)、多類共同空間模式(CSP)、增量式支持向量機(jī)(ISVM)相結(jié)合的腦電識(shí)別新方法,以解決腦機(jī)接口中多類運(yùn)動(dòng)想象正確率低的問題。方法 首先采用ICA將EEG分離,然后利用樣本熵自動(dòng)識(shí)別分離后的噪聲,再采用RLS對(duì)識(shí)別出來的噪聲進(jìn)行濾波,最后進(jìn)行信號(hào)重構(gòu),得到去除噪聲的腦電信號(hào)。多類CSP采用“一對(duì)一”CSP與多頻段濾波相結(jié)合,對(duì)去噪后的腦電信號(hào)進(jìn)行特征提取。通過 “一對(duì)多”方式的ISVM對(duì)三類運(yùn)動(dòng)想象腦電信號(hào)獲取的特征向量進(jìn)行分類。為檢驗(yàn)新方法的有效性,將本文方法與多類CSP+ISVM(方法1)及RLS-ICA+多類CSP+ISVM(方法2)進(jìn)行比較。結(jié)果 對(duì)三類想象任務(wù)而言,本文方法識(shí)別正確率與方法1和2相比均高8%左右。結(jié)論 與方法1和2比較,RLS-ICA-SampEn、多類CSP、ISVM相結(jié)合的腦電識(shí)別新方法能更好地適用于多類運(yùn)動(dòng)想象任務(wù)識(shí)別。

Objective For multi-class motor imagery tasks in brain computer interface (BCI), this paper presents a novel recognition method of electroencephalography (EEG) by combining RLS-ICA-SampEn [RLS (recursive least-squares), ICA (independent component analysis), SampEn (sample entropy)], multi-class CSP (common spatial patterns) and ISVM (incremental support vector machine). Methods In the RLS-ICA-SampEn, Firstly, the ICA is used to decompose the contaminated EEG signals into independent components (IC). Then, the sample entropy is used to automatically identify the noise signal in the IC. Next, the RLS adaptive filters are applied to the identified noise in IC to remove noise further. Finally, the processed ICs are then projected back to reconstruct the noise-free EEG signals. The RLS-ICA-SampEn is used to preprocess EEG signals to get pure EEG signals, in which some noise signals can be removed. The multi-class CSP combines the CSP and the multi-band filtering technology, in which the CSP uses the ‘one versus one’ strategy. The multi-class CSP is used to extract features for pure EEG signals. The obtained features are input to the ISVM for classification. The ‘one versus rest’ strategy is applied to classify three-class EEG signals. In order to verify the effectiveness of the proposed novel method, it is compared with other two methods including multi CSP+ISVM(method 1), RLS-ICA + multi CSP + ISVM(method 2). ResultsThe result shows that the recognition accuracy obtained by the proposed method is higher about 8% than other two methods. Conclusions Compared with method 1 and 2, the proposed method is better suited for the recognition of multi-class motor imagery tasks in BCI.
 

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]