51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于SVM的便攜式睡眠監(jiān)測系統(tǒng)設(shè)計

A design of sleep monitoring system based on support vector machines

作者: 林秀晶  錢松榮                          
單位:                                 復(fù)旦大學(xué)信息科學(xué)與工程學(xué)院(上海200433)            
關(guān)鍵詞:                               睡眠監(jiān)測;自動睡眠分析;支持向量機(jī);便攜性              
分類號:
出版年·卷·期(頁碼):2015·34·3(273-277)
摘要:

目的 睡眠監(jiān)測是睡眠質(zhì)量分析中重要的環(huán)節(jié),但目前的睡眠監(jiān)測系統(tǒng)復(fù)雜而且難以攜帶。本文提出基于支持向量機(jī)的便攜式睡眠監(jiān)測系統(tǒng),以方便地實(shí)時監(jiān)控睡眠。方法 該系統(tǒng)硬件部分由服務(wù)器和用戶端設(shè)備構(gòu)成,其中用戶端設(shè)備負(fù)責(zé)數(shù)據(jù)采集和數(shù)據(jù)傳輸,服務(wù)器端負(fù)責(zé)數(shù)據(jù)分析及相關(guān)的資源管理。睡眠分析軟件采用支持向量機(jī)(support vector machines, SVM)作為分析算法,在提取特征值的基礎(chǔ)上,以有向無環(huán)圖作為多分類策略分析得到睡眠的時相。結(jié)果 對于患者的睡眠腦電實(shí)驗(yàn)表明分析正確率高,所需的分析時間短。結(jié)論 該系統(tǒng)用戶端設(shè)備體積小,方便攜帶,分析正確率高,實(shí)時性好,在睡眠監(jiān)測領(lǐng)域具有良好的應(yīng)用前景。
 

Objective Sleep monitoring is an important part of the analysis of sleep quality, yet the sleep monitoring system available now is complex and cumbersome. A portable sleep monitoring system based on support vector machines (SVM) is proposed in this paper with great convenience and efficiency. Methods The system’s hardware consists of the server and the user equipment. The user equipment with high portability is used for data acquisition and data transmission. The server is used for data analysis and resource maintenance. SVM is adopted as the automatic sleep analysis algorithm in the server. Based on extracted features, sleep stages are got with directed acyclic graph as the multi-classification method. Results The research results based on patient EEG analysis show that the system can reach a high accuracy rate and take short analysis time average analysis time of 1.45 seconds. Conclusions The compact user equipment is highly portable, and it can feedback the correct result to the users in real time, thus confirming that the design has a promising future in sleep monitoring.

參考文獻(xiàn):

[1]李穎潔, 邱意弘,朱貽盛. 腦電信號分析方法及其應(yīng)用[M]. 北京:科學(xué)出版社, 2009:75-87.

Li Yingjie, Qiu Yihong, Zhu Yisheng. EEG Analysis Methods and Its Applications[M]. Beijing: Science Press, 2009:75-87.

[2]Kryger,鐘南山,張秀華. 睡眠醫(yī)學(xué)--理論與實(shí)踐[M].北京:人民衛(wèi)生出版社,2010:1-35.

Kryger, Zhong Nanshan, Zhang Xiuhua. Principles and Practice of Sleep Medicine[M]. Beijing: People’s Education Press,2010: 1-35.

[3]Chesson AL Jr, Ferber RA, Fry JM, et al. The indications for polysomnography and related procedures[J]. Sleep, 1997, 20(6): 423-487.

[4]趙陽,李建瑞,王利偉,等.北京市朝陽區(qū)成人打鼾及阻塞性睡眠呼吸暫停低通氣綜合征流行病學(xué)調(diào)查[J].中國醫(yī)藥導(dǎo)報 , 2013,10(27): 108-111.

Zhao Yang, Li Jianrui, Wang Liwei, et al. Epidemiological investigation of snoring and obstructive sleep apnea-hypopnea syndrome among the adults in Chaoyang District of Beijing City[J]. China Medical Herald, 2013,10(27):108-111.

[5]Maggard, Jessie Yang. Automation of sleep staging [D]. Canada: University of Waterloo, 2010.

[6]Berry RB, Brooks R, Gamaldo CE, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.0[M]. Darien, Illinois: American Academy of Sleep Medicine, 2012.

[7]Gorur D, Halici U, Aydin H, et al. Sleep spindles detection using short time Fourier transform and neural networks[C]//Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International Joint Conference on IEEE, 2002, 2: 1631-1636.

[8]Janjarasjitt S. Examination of temporal characteristic of sleep EEG subbands based on the local min-max[C]//Biomedical Engineering International Conference (BMEiCON), 2012. IEEE, 2012: 1-4.

[9]Burges CJC. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.

[10]Platt JC, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multiclass Classification[J]. MPS, 1999,12: 547-553.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]