51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于小波分析和灰度紋理特征的乳腺X線圖像微鈣化點(diǎn)區(qū)域的提取

Extraction of the regions of microcalcification in breast X-ray image based on Wavelet analysis and image texture feature

作者:                             彭慶濤  吳水才  高宏建  曹紅光                  
單位:                      北京工業(yè)大學(xué)生命科學(xué)與生物工程學(xué)院(北京100124)        
關(guān)鍵詞:                     灰度共生矩陣;小波;支持向量機(jī);微鈣化點(diǎn)區(qū)域          
分類號(hào):
出版年·卷·期(頁碼):2015·34·5(462-467)
摘要:

目的 乳腺癌的早期發(fā)現(xiàn)對(duì)患者意義重大。為幫助醫(yī)生進(jìn)行乳腺癌的早期檢查和診斷,本文提出利用小波分析與圖像紋理特征提取相結(jié)合的方法來提取乳腺X線圖像微鈣化點(diǎn)區(qū)域,在提高檢查準(zhǔn)確性的同時(shí)避免漏檢誤檢。方法 首先利用灰度共生矩陣所提取的能量、熵、對(duì)比度、相關(guān)性以及小波分解后得到的各層高頻系數(shù)的方差、能量作為圖像的特征向量,然后利用支持向量機(jī)進(jìn)行訓(xùn)練建立最優(yōu)分類模型。最后利用建立的最優(yōu)分類模型實(shí)現(xiàn)乳腺X線圖像微鈣化點(diǎn)區(qū)域的提取并利用檢出率和誤檢率對(duì)結(jié)果進(jìn)行評(píng)估。結(jié)果 使用臨床數(shù)據(jù)進(jìn)行驗(yàn)證,結(jié)果表明利用小波分析與圖像紋理特征提取相結(jié)合的方法能有效提取乳腺圖像中的微鈣化點(diǎn)區(qū)域。結(jié)論 基于小波分析和灰度紋理特征的乳腺X線圖像微鈣化點(diǎn)區(qū)域的提取方法比單一的圖像紋理特征提取或小波分析等方法,提取的效果更好。另外,該方法設(shè)計(jì)簡單,更易于實(shí)現(xiàn)乳腺癌的自動(dòng)化診斷。

Objective Early detection of breast cancer is of great significance to patients. For early detection and diagnosis of breast cancer, we propose a method of using wavelet analysis and image texture feature extraction to extract the regions of microcalcification in breast X-ray image. This method can improve the accuracy of the examination and avoid the phenomenon of missing detection and false detection. Methods Firstly, the algorithm combined energy, entropy, contrast, correlation which were based on gray level co-occurrence matrix with variance and energy of high frequency coefficient of each wavelet layer as the feature vector of the image. Then, we used support vector machine for training and establishing the optimal classification model. Finally, the optimal classification model was used to extract the regions of microcalcification, and positive rate and false positive rate were used to evaluate the results. Results Clinical data were used to test the method. The results indicated that the combination of wavelet analysis and image texture feature extraction method could extract the region of microcalcification in breast X-ray image effectively. Conclusions The combination of wavelet analysis and image texture feature extraction method got a better result compared with the methods only using wavelet analysis or image texture feature extraction. Furthermore, the method was simple and easy to achieve the automation diagnosis of breast cancer.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]