51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
___________多標記學習在中醫(yī)舌象分類中的研究_________

Research on multi-label learning in the classification of tongue images in TCM

作者:               張靜  張新峰  王亞真  蔡軼珩  胡廣芹          
單位:           北京工業(yè)大學電子信息與控制工程學院(北京100124)    
關鍵詞:           中醫(yī);舌象;舌質;舌苔;多標記學習      
分類號:           R318.04    
出版年·卷·期(頁碼):2016·35·2(111-116)
摘要:

目的 中醫(yī)舌診中,一幅舌象對應舌色、苔色和苔厚等多個類別,而且舌象的多個類別間存在一定的相關性。傳統(tǒng)的數(shù)據(jù)挖掘技術無法利用這些相關性同時進行建模,本文擬探索用多標記學習方法解決舌象這種多標記數(shù)據(jù)的分類問題。方法 首先對舌象進行苔質分離,分別提取舌質和舌苔的顏色特征,再對舌苔圖像分塊,提取每一塊的紋理特征,隨后通過多標記學習算法(multi-label learning by exploiting label dependency, LEAD)進行分類。最后將LEAD的分類結果和ML-kNN的結果進行對比,評價指標為漢明損失(Hamming loss)、平均精度(average precision)和(-評估)(-evaluation)。結果 相對于SVM等傳統(tǒng)的單標記學習算法,LEAD可以將多個類別同時賦予一幅舌圖像,而且在三個指標上的分類效果均優(yōu)于ML-kNN。結論 多標記LEAD算法用于舌象分類能夠使得對舌象的描述更全面、準確,可以輔助中醫(yī)進行舌診。

Objective In tongue inspection of traditional Chinese medicine (TCM), a tongue image is associated with multiple labels of tongue body color, tongue coat color, the coat thickness and so on, and there are certain correlations between these labels. Modeling can not be carried on with the correlation at the same time by traditional data mining technology. So, we explore with multi-label learning to solve the classification of tongue images with multiple labels. Methods First, color features are extracted after separating tongue coat and tongue body, then blocking is done on tongue coat only and texture features are extracted on each block, and multi-label learning algorithm LEAD is subsequently used for classification. Finally, the classification results of LEAD and ML-kNN are compared, and the evaluation metrics adopted are Hamming loss, average precision and -evaluation. Results A set of proper labels can be assigned to a tongue image simultaneously through this method compared with the traditional single-label learning such as SVM. What’s more, LEAD can achieve better classification results on all the three metrics than ML-kNN. Conclusions LEAD can make the description of the tongue image more comprehensive and more accurate, providing an objective reference for the TCM tongue diagnosis.

參考文獻:

[1]劉春雨.基于紋理特征的舌象分類研究及應用[D].哈爾濱:哈爾濱工業(yè)大學,2006.

Liu Chunyu. Texture-based tongue classification and its application[D].Harbin: Harbin Institute Technology, 2006.

[2]楚宇燕.基于中醫(yī)望診的舌象特征提取與健康信息分析技術研究[D].廈門:廈門大學,2008.

ChuYuyan. The research of extraction of the tongue image's feature & analysis technology of healthy information based on traditional Chinese medicine inspection[D]. Xiamen: Xiamen University, 2008.

[3]李志欣,卓亞琦,張燦龍,等.多標記學習研究綜述[J].計算機應用研究,2014,31(6):1601-1605.

Li Zhixin, Zhuo Yaqi, Zhang Canlong, et al. Survey on multi-label learning[J].2014,31(6):1601-1605.

[4]Zhang Minling, Zhang Kun. Multi-label learning by exploiting label dependency[C]. Washington D: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’10), 2010.

[5]韓鋒.舌象顏色空間分析及顏色特征研究[D].哈爾濱:哈爾濱工業(yè)大學,2011.

Han Feng. Tongue color space analysis and color feature study [D].Harbin: Harbin Institute of Technology, 2011.

[6]王永剛,楊杰,周越,等.中醫(yī)舌象顏色識別的研究[J].生物醫(yī)學工程學雜志, 2005,22(6):1116-1120.

Wang Yonggang, Yang Jie, Zhou Yue, et al. Tongue image color recognition in traditional Chinese medicine[J]. Journal of Biomedical Engineering, 2005, 22(6):1116-1120.

[7]崔寧海,劉麗萍,李長智.空間主顏色描述符的圖像特征提取算法[J].沈陽理工大學學報,2011,30(4):19-22.

Cui Ninghai, Liu Liping, Li Changzhi. The spatial dominant color descriptor for feature extraction algorithms of image[J]. Journal of Shenyang University of Technology, 2011, 30(4):19-22.

[8]高程程,惠曉威.基于灰度共生矩陣的紋理特征提取[J].計算機系統(tǒng)應用,2010,19(6):195-199.

Gao Chengcheng, Hui Xiaowei. GLCM-based texture feature extraction[J]. Computer Systems & Applications, 2010, 19(6):195-199.

[9]Boutell MR, Luo Jiebo, Shen Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004,37(9):1757-1771.

[10]Daniel Eaton, Kevin Murphy.BDAGL. Bayesian DAG learning[EB/OL](2013-04-09). http://www.cs.ubc.ca/~murphyk/Software/BDAGL/index.html.

[11]Zhang Minling, Zhou Zhihua. ML-kNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007,40(7):2038-2048.


服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]