51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種面向組學(xué)數(shù)據(jù)的中級融合分類方法

Amid-level fusion method for omics dataset

作者: 李明達  鄭浩然 
單位:中國科學(xué)技術(shù)大學(xué)計算機科學(xué)與技術(shù)學(xué)院(合肥230027)
關(guān)鍵詞: 學(xué)數(shù)據(jù);降維;中級融合;偏最小二乘法;支持向量機 
分類號:R318.04
出版年·卷·期(頁碼):2016·35·3(249-253)
摘要:

目的 對組學(xué)數(shù)據(jù)進行深入分析有助于推動醫(yī)療診斷等方面的研究。利用單一種類組學(xué)數(shù)據(jù)的分析方法無法解決某些復(fù)雜生物醫(yī)學(xué)問題。為利用多種組學(xué)信息以解決復(fù)雜的生物醫(yī)療問題,本文提出一種中級融合分類方法。方法 引入偏最小二乘法(partial least squares,PLS)分別對各種組學(xué)數(shù)據(jù)進行降維,然后利用支持向量機(support vector machine,SVM)對融合后的數(shù)據(jù)進行分類。結(jié)果 “非小細胞肺癌與腎癌”和“結(jié)腸直腸癌與結(jié)腸直腸腺瘤”這兩個組學(xué)數(shù)據(jù)集被用于測試本文方法的有效性。在這兩個癌癥組學(xué)數(shù)據(jù)集上的應(yīng)用,體現(xiàn)出該方法不但能有效降低高維組學(xué)數(shù)據(jù)的維數(shù),而且具有較高的分類準(zhǔn)確率(接受者操作特征曲線下的面積達0.95以上)。結(jié)論 本文提出的中級融合方法能夠利用多種組學(xué)數(shù)據(jù)對癌癥樣本進行分類,可有效提高疾病診斷的準(zhǔn)確率。


Objective The analysis of omics data is of great importance for medical diagnosis. Methods to analyze only one type of omic dataset cannot solve certain complex biomedical problems. In order to solve the complex biomedical problems by using different kinds of omics datasets,a mid-level fusion method is proposed. Methods Partial least squares (PLS) is used to reduce the dimension,then support vector machine (SVM) is used for classification. Results “Non-small cell lung cancer vs renal cancer” and “colorectal cancer vs colorectal adenomas” datasets are used for testing the method’s effectiveness. The experimental results demonstrate that the mid-level fusion method can not only reduce the dimension of omics data but also obtain a high classification accuracy (The area under receiver operating characteristic curve is higher than 0.95). Conclusions The mid-level fusion method takes advantages of different kinds of omics datasets for classification and improves the accuracy of diagnosis.

參考文獻:


[1]Joyce AR, Palsson BO. The model organism as a system:integrating ‘omics’ data sets[J]. Nat Rev Mol Cell Biol, 2006, 7 (3):198-210.

[2]Boccard J, Rutledge DN. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion[J]. Analytica chimica acta, 2013, 769:30-39.

[3]Wangen LE, Kowalski BR. A multiblock partial least squares algorithm forinvestigating complex chemical systems [J]. Chemom, 1989, 3: 3-20.

[4]Smilde AK, van der Werf MJ, Bijlsma S, et al. Fusion of mass spectrometry-based metabolomics data [J]. Anal Chem, 2005, 77: 6729-6736.

[5]Moyon T, Le Marec F, Qannari EM, et al. Alexandre-Gouabau, Statistical strategies for relating metabolomics and proteomics data: a real case study in nutrition research area [J]. Metabolomics, 2012,8(6):1090-1101.

[6]Bylesj M, Rantalainen M, Cloarec O, et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification[J]. Journal of Chemometrics, 2006, 20:341-351.

[7]Roussel S, Roger JM, Bellon-Maurel V, et al. Fusion of Aroma, FT-IR and UV Sensor Data Based on the Bayesian Inference. Application to the Discrimination of White Grape Varieties [J]. Chemom Intell Lab Syst, 2003, 65 (2): 209-219.

[8]Smolinska A, Blanchet L, Buydens LMC, et al. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review[J]. Analytica Chimica Acta, 2012, 750: 82-97.

[9]Wold S, Sjstrm M, Eriksson L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2):109-130. 

[10]Cortes C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995, 20(3):273-297.

[11]Biancolillo A, Bucci R, Magrì AL, et al. Data-fusion for multiplatform characterization of an italian craft beer aimed at its authentication [J]. Analytica Chimica Acta, 2014, 820:23-31.

[12]Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen[J]. Nat Rev Cancer, 2006, 6:813-823.

[13]Ross DT, Scherf U, Eisen MB, et al. Systematic variation in gene expression patterns in human cancer cell lines[J]. Nat Genet, 2000, 24:227-235.

[14]Staunton JE, Slonim DK, Coller HA, et al. Chemosensitivity prediction by transcriptionalprofiling[J]. Proc Natl Acad Sci USA, 2001, 98:10787-10792.

[15]Bro R, Nielsen HJ, Savorani F, et al. Data fusion in metabolomic cancer diagnostics[J]. Metabolomics, 2013, 9(1): 3-8.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]