51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于DCT的心電信號分類算法

Classification algorithm of ECG based on DCT

作者: 盧潭城  呂愿愿  鄧永莉  劉明亮  陸起涌 
單位:復(fù)旦大學(xué)電子工程系(上海200433)
關(guān)鍵詞: 離散余弦變換;特征分析;最小歐式距離 
分類號:R318.04;TP391.4
出版年·卷·期(頁碼):2016·35·3(259-266)
摘要:

目的 提高心電信號的分類準(zhǔn)確率,降低算法復(fù)雜度。方法 首先以MIT-BIH心電數(shù)據(jù)作為學(xué)習(xí)模板,然后在心電信號的頻域和時域上提取其離散余弦變換(discrete cosine transform,DCT)、R-R間期和QRS復(fù)合波的三種特征值進行分析,最后采用最小歐式距離分類器判斷待測心電信號的類型。結(jié)果 該分類模型通過MIT-BIH和AHA國際標(biāo)準(zhǔn)心電數(shù)據(jù)庫的驗證,分別得到96.6%和94.1%的分類準(zhǔn)確率。結(jié)論 本文的心電分類模型區(qū)別于其他分類算法的一個最大特點就是算法復(fù)雜度低,這是異常心律能夠被實時檢測和預(yù)警的關(guān)鍵,而且建立的心電分類模型已經(jīng)能夠在普通的手機平臺上實現(xiàn)。

Objective To improve the classification accuracy of ECG and reduce the complexity of the algorithm.Methods This paper uses MIT-BIH ECG database as learning templates,then extracts its eigenvalues of DCT,R-R interval and QRS from frequency and time domain of ECG signals to analyze.Finally,the type of ECG signal is classified based on the minimum Euclidean distance classifier.Results The classification model is tested and verified by international standard MIT-BIH and AHA ECG database,with the classification accuracy of 96.6% and 94.1%,respectively.Conclusions Lower complexity in ECG classification model than other algorithm is the greatest feature,which is the key of detecting real-time abnormal heart rhythms.And ECG classification model has been realized on a common mobile platform.

參考文獻:

[1]楊虎. 遠(yuǎn)程心電監(jiān)測技術(shù)進展[J]. 中國醫(yī)療器械信息,2005,11(6):11-12.

Yang Hu. The technology development of TELE electrocardiogram monitoring[J]. China Medical Device Information,2005,11(6):11-12.

[2]Lu TC, Peng L, Xiang G, et al. A portable ECG monitor with low power consumption and small size based on AD8232 chip [C]. Applied Mechanics and Materials, 2014: 2884-2887.

[3]王麗蘋,董軍. 心電圖模式分類方法研究進展與分析[J]. 中國生物醫(yī)學(xué)工程學(xué)報,2010,29(6): 916-926.

Wang Liping, Dong Jun. The advance research and analysis of electrocardiogram pattern classification[J]. Chinese Journal of Biomedical Engineering,2010,29(6): 916-926.

[4]夏宏器,鄧開伯. 心律失常的臨床分析與決策[M]. 北京:中國協(xié)和醫(yī)科大學(xué)出版社,2002:6-111.

[5]Pathoumvanh S, Hamamoto K, Indahak P. Arrhythmias Detection and Classification base on Single Beat ECG Analysis [C]. 2014 4th Joint International Conference on JICTEE. Chiang Rai, 2014: 1-4

[6]Lai S, Chien W, Lan C, et al. An efficient DCT-IV-based ECG compression algorithm and its hardware accelerator design [C]. 2013 3 IEEE International Symposium on ISCAS. Beijing, 2013: 1296-1299.

[7]韓君澤. 心電信號自動檢測與診斷方法的研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2013.

[8]張茜,邵堃,劉磊. 一種基于最小距離分類器的惡意代碼檢測方法 [J]. 廣西師范大學(xué)學(xué)報:自然科學(xué)版,2009,27(3):183-187.

Zhang Qian, Shao Kun, Liu Lei. A detection of malicious code based on minimum distance classifier [J]. Journal of Guangxi Normal University: Natural Science Edition, 2009,27(3):183-187.

[9]宋喜國,鄧親愷. MIT-BIH心率失常數(shù)據(jù)庫的識讀及應(yīng)用 [J]. 中國醫(yī)學(xué)物理學(xué)雜志,2004,21(4):230-232.

Song Xiguo, Deng Qinkai. On the format of MIT-BIH arrhythmia database [J]. Chinese Journal of Medical Physics,2004,21(4):230-232. 

[10]Linh TH, Stanislaw O, Stodolski M. On-line Heart Beat Recognition Using Hermite Polynomials and Neuro-fuzzy Network [J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(4): 1224-1231.

[11]Vargas F, Lettnin D, Felippetto de Castro MC, et al. Electrocardiogram Pattern Recognition by Means of MLP Network and PCA: A Case Study on Equal Amount of Input Signal Types [C]. Brazilian Symposium on Neural Networks, 2002: 200-205.

[12]He L, Hou WS, Zhen XL, et al. Recognition of ECG Patterns Using Artificial Neural Network [C]. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications. Jinan, 2006: 6(2)477-481.

[13]張雷剛. 心電信號的特征提取與分類研究[D]. 合肥:中國科學(xué)技術(shù)大學(xué),2012.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]