51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
___________基于CSP的多類運動想象腦電特征自動選擇算法_________

Automatic selection algorithm for multi-class motor imagery of EEG eigenvalues based on CSP

作者:               康莎莎  周蚌艷  呂釗  吳小培          
單位:           安徽大學計算機科學與技術(shù)學院(合肥230601)    
關(guān)鍵詞:           共空間模式;運動想象;腦電信號;矩陣近似聯(lián)合對角化      
分類號:           R318.04    
出版年·卷·期(頁碼):2016·35·4(339-346)
摘要:

目的 在基于協(xié)方差矩陣近似聯(lián)合對角化(joint approximation diagonalization, JAD)的多類共空間模式(common spatial pattern, CSP)運動想象檢測濾波器的設(shè)計過程中,需要對關(guān)鍵特征向量進行選擇。較常用的基于“最高得分特征值準則”的特征向量選擇方法會出現(xiàn)不同類數(shù)據(jù)的最高得分特征值對應同一個特征向量,因此導致無效CSP濾波器的出現(xiàn),進而影響系統(tǒng)識別率。本文在傳統(tǒng)JAD方法上提出一種特征值自動選擇方法以解決特征值選擇無效問題。方法 基于BCI Competition 2005data IIIa(BCI2005)和實驗室自主采集三類運動想象腦電(EEG)數(shù)據(jù)集,對不同想象類別數(shù)據(jù)對應同一個特征向量的異常現(xiàn)象進行實驗分析。結(jié)果 在兩個數(shù)據(jù)集自測試下,本方法的三類運動想象平均識別率分別達到82.78%和85.92%,比傳統(tǒng)JAD提高3.44%和3.25%。結(jié)論 基于CSP的多類運動想象腦電特征自動選擇算法能夠有效解決特征值選擇無效問題,進而提升運動想象BCI系統(tǒng)的分類識別率。

Objective The joint approximation diagonalization (JAD) of the covariance matrix extends the common spatial pattern (CSP) algorithm to the multi-class motor imagery, in which the key feature vectors should be chosen appropriately. The most common method is to select the eigenvectors corresponding to the highest score eigenvalues. However, according to these choice criteria, the same eigenvectors are often just selected for the datasets of different classes, which may cause the failure of CSP spatial filtering and the decline of the classification accuracy. A method with the new choice criterion is proposed in this paper, which can automatically select the effective eigenvectors based on the traditional JAD algorithm.Methods The three-class motor imagery signals of two datasets (BCI Competition 2005 dataset IIIa and our own recorded experiment dataset) were used to testify the validity of the algorithm. Results The mean classification accuracies of the three-class motor imagery were calculated with the self-testing of the two datasets. The accuracies calculated by our proposed algorithm achieved 82.78% and 85.92%, which were improved by 3.44% and 3.25% respectively, compared to the traditional JAD algorithm. Conclusions This algorithm can automatically select the effective features based on CSP, and avoid selecting the useless features for classification, which can greatly improve the classification accuracies of motor imagery BCI system.

參考文獻:

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]