51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
不同大腦分區(qū)下注意缺陷多動障礙分類研究

Classification of ADHD children under different kinds of brain partition

作者: 葉子駿  黃惠芳  劉杰 
單位:北京交通大學(xué)(北京100044)
關(guān)鍵詞: 注意缺陷障礙;功能磁共振成像;大腦分區(qū);功能連接;分類性能 
分類號:R318.04
出版年·卷·期(頁碼):2016·35·4(389-395)
摘要:

目的 注意缺陷多動障礙(attention deficit hyperactivity disorder, ADHD)是一種常見的影響兒童行為能力的精神疾病,但由于缺乏有力的客觀依據(jù)判斷發(fā)病機制,因而臨床上診斷與治療存在一定難度。從腦功能研究ADHD的發(fā)病機制是一個熱點,特別是從基于感興趣區(qū)域提取特征進行分類研究。為方便找出感興趣區(qū)域,研究者們根據(jù)解剖或功能將大腦進行區(qū)域劃分,常用的腦分區(qū)有6種,但還沒有研究證明哪一種腦分區(qū)最適用于ADHD分類研究。因此本文將對不同大腦分區(qū)下注意缺陷多動障礙分類研究,以判斷哪種分類效果好。方法 本實驗采用ADHD-200大賽的數(shù)據(jù)樣本,將數(shù)據(jù)分為12組,每種大腦分區(qū)下包含一組訓(xùn)練集和一組測試集。首先基于靜息態(tài)fMRI對6種不同大腦分區(qū)的訓(xùn)練集進行功能連接計算、特征分類、特征選擇,然后利用測試者檢驗得到6種分類模型的分類性能并做統(tǒng)計分析。結(jié)果 實驗結(jié)果顯示每種大腦分區(qū)下的訓(xùn)練集得到的分類準確率,并比較每種大腦分區(qū)下的測試集的分類性能,綜合分析總結(jié)出AAL大腦分區(qū)的分類性能最好,分類準確率達到63.16%。結(jié)論 在6種大腦分區(qū)下,AAL大腦分區(qū)是目前最適合用于研究ADHD的大腦分區(qū)方法。

Objective Attention deficit hyperactivity disorder (ADHD) is one of the most common diseases in school-age children, yet it is difficult to diagnose and treat because of lacking objective evidence to judge the pathogenesis. To study the pathogenesis of ADHD from the aspect of brain function is a hot spot, especially the research of classification based on the region of interest. In order to find useful region of interest, researchers divide the brain into certain regions based on anatomy or function. There are six kinds of common brain regions, yet no one proves which method is the best for ADHD classification. So this paper studies on ADHD classification under the six brain partitions in order to find the best. Methods The data come from the ADHD-200 competition including train data and test data. Data were divided into twelve groups, each containing a set of training sets and a set of test sets. Firstly, based on the resting state fMRI we make functional connectivity analysis, feature classification and feature selection under six brain partitions by using train data. Then we use the test data to test the classification effect of the classification models and analyze the results. Results The experimental results show that the classification accuracy of the training set is obtained under different brain regions, and then the classification performance of the test sets is compared. In the overall analysis of the classification performance of the six sets data, AAL brain regions has the best performance, and the accuracy is 63.16%. Conclusions In all the six kinds of brain partition, AAL brain partition is the most suitable method for the study of ADHD classification.

參考文獻:

[1]Smith SM, Miller KL, Salimi-Khorshidi G, et al. Network modelling methods for FMRI[J]. NeuroImage,2011,54 (2) :875-891.

[2]錢秋瑾, 楊莉, 王玉鳳. 兒童注意缺陷多動障礙的研究進展[J].北京大學(xué)學(xué)報:醫(yī)學(xué)版, 2007, 39(3):323-328.

Qian Qiujin, Yang Li, Wang Yufeng. Advances on comprehensive research on attention deficit hyperactivity disorder[J]. Journal of Peking University: Health Sciences, 2007, 39(3):323-328.

[3]Cheng Wei, Ji X, Zhang J, et al. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques[J]. Frontiers in Systems Neuroscience, 2012,6:68.

[4]Dey SB, Rao AR, Shah M. Exploiting the brain’s network structure in identifying ADHD subjects[J]. Frontiers in Systems Neuroscience,2012,6:75.

[5]Fair DA, Nigg JT, Iyer S, et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data[J]. Frontiers in Systems Neuroscience, 2013,6:80.

[6]Sato JR, Hoexter MQ, Fujita A, et al. Evaluation of pattern recognition and feature extraction methods in ADHD prediction[J]. Frontiers in Systems Neuroscience, 2012,6: 68.

[7]Sidhu GS, Asgarian N, Greiner R, et al. Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD[J]. Frontiers in Systems Neuroscience, 2012,6:74.

[8]Bohland JW, Saperstein S, Pereira F, et al. Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects[J]. Frontiers in Systems Neuroscience, 2012,6:78.

[9]Colby JB, Rudie JD, Brown JA, et al. Insights into multimodal imaging classification of ADHD[J]. Frontiers in Systems Neuroscience, 2012,6:59.

[10]Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008,172(1):137-141.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]