51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于中醫(yī)舌象特征的痤瘡證型分類的初步研究

Preliminary study of acne syndrome classification based on the characteristics of tongue in TCM

作者: 張新峰  王虹  貴明俊  胡廣芹 
單位:北京工業(yè)大學(xué)電子信息與控制工程學(xué)院(北京100124)
關(guān)鍵詞: 中醫(yī)診斷;痤瘡;證型分類;舌象;圖像處理;貝葉斯網(wǎng)絡(luò) 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2016·35·5(464-468)
摘要:

目的 舌診是中醫(yī)診斷痤瘡的有效途徑,目前中醫(yī)通過(guò)觀察舌象來(lái)確定痤瘡患者的證候類型。由于痤瘡患者眾多,完全基于人工診斷的效率較低。本文提出一種基于圖像處理的痤瘡證型識(shí)別方法來(lái)輔助中醫(yī)診斷。方法 首先,分別提取舌象的顏色、紋理和齒痕特征,然后使用貝葉斯網(wǎng)絡(luò)建模,找出特征與特征,特征與證型之間的關(guān)系,其中將齒痕提取算法進(jìn)行改進(jìn),將計(jì)算凸包面積改進(jìn)為找到每個(gè)凸包的關(guān)鍵點(diǎn),最后使用該算法對(duì)舌象進(jìn)行齒痕數(shù)量提取,并與中醫(yī)診斷結(jié)果相比較。結(jié)果 對(duì)比醫(yī)生診斷結(jié)果,基于圖像處理的痤瘡證型自動(dòng)分類,分3類的正確率達(dá)83.87%,并直觀地表示出特征與特征,特征與證型之間的關(guān)系。結(jié)論 使用圖像處理的方法進(jìn)行痤瘡證型的識(shí)別具有可行性,對(duì)計(jì)算機(jī)輔助痤瘡診斷的發(fā)展有一定幫助。

Objective Tongue diagnosis is one of the effective ways to diagnose acne. Traditional Chinese medicine (TCM) in treatment of acne is currently mainly determined by doctors to be observed in patients’ tongues. Because the number of patients with acne is numerous, the efficiency completely based on the artificial diagnosis is low. This paper presents a novel method for the diagnosis of acne syndromes with a computer to assist TCM diagnosis. Methods First of all, features of color, texture and teeth marks were extracted from acne tongues. Then we used Bayesian network to simulate the relationship between the features and syndromes, and completed the classification. The original extraction algorithm for teeth marks was improved from calculation of convex hull area to finding each key point of convex hull. Finally we used the algorithm to extract the number of teeth marks and compared with TCM diagnosis. Results The extraction results were consistented with TCM diagnosis. Compared with the TCM diagnosis, the accuracy of acne syndrome classification based on image processing was 83.87%, and intuitively showed the interaction between features and features, features and syndromes. Conclusions The results show the feasibility of image processing for the diagnosis of acne syndromes, which is beneficial to the development of auxiliary diagnosis of acne syndromes in TCM.

參考文獻(xiàn):

[1]蔣依吾, 陳建仲, 張恒鴻, 等. 電腦化中醫(yī)舌診系統(tǒng)[J].中國(guó)中西醫(yī)結(jié)合雜志, 2000,(2): 145-147.

Jiang Yiwu, Chen Jiangzhong, Zhang Henghong, et al. A computerized system tongue diagnosis in traditional Chinese medicine[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2000,(2): 145-147.

[2]易霞, 李晟, 秦莉花, 等.貝葉斯分類器在中醫(yī)證候中的運(yùn)用[J].中醫(yī)研究, 2013, 26(6): 4-6.

Yi Xia,Li Sheng, Qin Lihua, et al. The use of Bayesian classifier in syndromes analysis[J]. Chinese Medicine Research, 2013, 26(6): 4-6. 

[3]Wang Hong, Zhang Xinfeng. The preliminary research on feature extraction and classification of acne tongue picture in TCM[C]. Huangshan: International Conference on Internet Multimedia Computing and Service, 2013.

[4]鐘少丹, 韋玉科, 謝錚桂.基于凸包的齒痕點(diǎn)快速定位的方法研究[J].微計(jì)算機(jī)信息, 2009,26(33):312-314.

Zhong Shaodan, Wei Yuke, Xie Zhenggui. The research on tooth marks fast positioning method based on the convex hull[J]. Microcomputer Information, 2009, 26(33):312-314. 

[5]Wang H, Zhang X, Cai Y. Research on teeth marks recognition in tongue image[C]. Medical Biometrics, 2014 International Conference on IEEE, 2014: 80-84.

[6]Sklansky J. Measuring concavity on a rectangular mosaic[J]. IEEE Trans Computers, 1972, 21: 1355-1364.

[7]Pang B, Zhang D, Li N, et al. Computerized tongue diagnosis based on Bayesian networks[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(10):1803-1810.

[8]王雙成, 張明, 陳乃激. 基于因果語(yǔ)義定向的貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)[J].計(jì)算機(jī)工程與應(yīng)用, 2007,43(8): 29-31.

Wang Shuangcheng, Zhang Ming, Chen Naiji. Learning Bayesian networks structure based on causal semanitics orienting[J]. Computer Engineering and Applications, 2007, 43(8):29-31. 

[9]喻曉鋒,秦春影.一種改進(jìn)的貝葉斯網(wǎng)弧定向算法研究[J].計(jì)算機(jī)工程與科學(xué), 2010, 32(3): 82-84.

Yu Xiaofeng, Qin Chunying. Research on a modified Bayesian network arc orienting algorithm[J]. Computer Engineering& Science, 2010, 32(3): 82-84. 


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]