51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
生物醫(yī)學拉曼光譜質控方法研究

Study on the quality control methods of biomedical Raman spectroscopy

作者: 王浩  孟祥峰  劉艷珍  任海萍 
單位:中國食品藥品檢定研究院光機電室(北京100050)
關鍵詞: 生物醫(yī)學光子學;拉曼光譜;分子影像;化學分析;  質量控制 
分類號:R318.51; TN818; TH773
出版年·卷·期(頁碼):2016·35·5(527-532)
摘要:

目的 評價生物醫(yī)學拉曼光譜設備的關鍵性能參數(shù),為開展不同廠家產(chǎn)品的一致性比對和建立拉曼光譜類醫(yī)療器械的檢測規(guī)范做準備。方法 開發(fā)通用的拉曼光譜實驗平臺,測量化學參考物質,開發(fā)光譜分析方法,對實驗系統(tǒng)的分辨率、波長校正、信噪比、系統(tǒng)響應等進行分析,并使用幾種常見的生物分子進行測試驗證。結果 根據(jù)化學參考物質的拉曼光譜提取了實驗系統(tǒng)的光譜分辨率、波長校正、信噪比、系統(tǒng)響應等信息,在測試中可有效地將生物分子的原始拉曼譜還原為可比對的標準拉曼譜。結論 本文方法可有效提取和評價拉曼系統(tǒng)的性能參數(shù),這對于拉曼光譜和其他相關光譜醫(yī)療器械的質控具有積極意義。

Objective To assess the key performance parameters of Raman spectroscopy medical device, and prepare for the testing of consistency between different Raman products and the establishment of quality control criterion. Methods A general Raman experimental platform was built to measure chemical reference materials. Spectral analysis methods were developed to evaluate the performance parameters of the Raman system including spectral resolution, wavelength calibration, signal-to-noise ratio and system response. Certain common biomolecules were tested as validation. Results Wavelength calibration, signal-to-noise ratio and system response were extracted from the Raman spectra of the chemical reference materials. The standard spectra of certain biomolecules were effectively reconstructed from the raw spectra in the test, which can be used for comparison. Conclusions This method was demonstrated the capability to acquire the performance parameters of Raman systems, which were beneficial for the quality control of Raman and other related spectroscopy medical devices.

參考文獻:

[1]Raman CV,Krishnan KS. A new type of secondary radiation[J]. Nature,1928,121:501-502.

[2]Shim MG, Wilson BC, Marple E, et al. Study of fiber-optic probes for in vivo Medical Raman spectroscopy[J]. Appl Spectrosc,1999,53:619-627.

[3]Utzinger U, Richards-Kortum RR. Fiber optic probes for biomedical optical spectroscopy[J]. J Biomed Opt,2003,8:121-147.

[4]Motz JT, Hunter M, Galindo LH, et al. Optical fiber probe for biomedical Raman spectroscopy[J]. Applied Optics, 2004,43:542-554.

[5]Santos LF, Wolthuis R, Koljenovic S, et al. Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region[J]. Analytical Chemistry, 2005,77:6747-6752.

[6]de Lima CJ, Sathaiah S, Silveira L,et al. Development of catheters with low fiber background signals for Raman spectroscopic diagnosis applications[J]. Artificial Organs, 2000,24:231-234.

[7]Manoharan R, Baraga JJ, Feld MS, et al. Quantitative histochemical analysis of human artery using Raman-spectroscopy[J]. Journal of Photochemistry and Photobiology B-Biology,1992,16:23.

[8]Deinum G, Rodriguez D, Romer TJ, et al. Histological classification of Raman spectra of human coronary artery atherosclerosis using principal component analysis[J]. Appl Spectrosc,1999,53:938-942.

[9]Hanlon EB, Manoharan R, Koo TW, et al. Prospects for in vivo Raman spectroscopy[J]. Physics in Medicine and Biology, 2000,45:R1-R59.

[10]van de Poll SWE, Bakker Schut TC, van der Laarse A, et al. In situ investigation of the chemical composition of ceroid in human atherosclerosis by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002,33:544-551.

[11]Bak J, M. Jrgensen T. Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy: comment[J]. Optics Express, 2007,15:5997-5999.

[12]c′epanovic′ OR, Fitzmaurice M, Gardecki JA, et al. Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy[J]. J Biomed Opt,2006,11:021007-021009.

[13]Chau AH, Motz JT, Gardecki JA, et al. Fingerprint and high-wavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo[J]. J Biomed Opt, 2008,13:040501.

[14]Chau AH. Development of an intracoronary Raman spectroscopy system[J]. Cambridge,MA:Massachusetts Institute of Technology,2009.

[15]Motz JT, Gandhi SJ, Scepanovic OR, et al. Real-time Raman system for in vivo disease diagnosis[J]. J Biomed Opt,2005,10:031113-031117.

[16]Wachsmann-Hogiu S, Weeks T, Huser T. Chemical analysis in vivo and in vitro by Raman spectroscopy-from single cells to humans[J]. Current Opinion in Biotechnology,2009,20:63-73.

[17]黎雪清,魯藝,王鐵杰,等. 抗風濕類中成藥和保健食品中非法添加化學成分的高液相色譜-質譜/質譜法檢測[J].中國醫(yī)藥導報,2015,12(6): 86-90.

Li Xueqing,Lu Yi,WANG Tiejie,et al. Rapid determination of chemicals added illegally in anti-rheumatic traditional Chinese medicines and health products by HPLC-MS/MS[J]. China Medical Herald,2015,12(6): 86-90.

[17]任玲玲,趙迎春,姚雅萱,等. 幾種代表性純物質拉曼光譜有效測量程序的確定[J].現(xiàn)代測量與實驗室管理, 2014, (6):3-6.


服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]