51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于無線表面肌電信號采集的上肢動作識別

Wireless surface EMG acquisitionfor upper limb motion recognition

作者: 吳志文  李曉歐 
單位:上海理工大學醫(yī)療器械與食品學院(上海200093)
關鍵詞: 表面肌電;信號采集;動作識別;自回歸系數;可穿戴設計 
分類號:R318.04
出版年·卷·期(頁碼):2016·35·6(593-598)
摘要:

目的 為識別上肢動作并應用于人機交互領域以及為相關患者提供上肢康復訓練,設計一個無線表面肌電信號采集及識別系統(tǒng)。方法 系統(tǒng)主要由硬件部分與軟件部分組成。硬件設計方面,由增強型80C51作為各個模塊的控制中心。貼片電極采集的肌電信號,經儀表放大器AD8422放大處理,并進行A/D轉換,最后通過無線方式將信號發(fā)送給接收盒并傳送至PC。軟件設計方面,在VC平臺下,通過均方根、自回歸系數提取特征值,利用支持向量機算法進行動作模式識別。結果 設備的采集部分體積為37mm×27mm×15mm,可方便地實現穿戴式,上位機部分則可以滿足對信號的各種分析以及作為人機交互界面。結論 該系統(tǒng)可實現對患者的康復訓練,也可擴展到游戲娛樂。


Objective To recognize upper limb motion and apply it in the human-computer interaction field as well as provide upper limb rehabilitation training for the related patients, we designed a wireless surface electromyography (EMG) signal-acquisition and recognition system. Methods The system is consisted of hardware and software. In the aspect of hardware design, enhanced 80C51 MCU is the control center of each module. The front-end signal is collected by the surface electrode patch, amplified by the instrument amplifier AD8422, with A/D conversion, finally, sent to the receiving box and the upper monitoring through the wireless mode. In the aspect of software design, in the VC platform, the characteristic value is extracted through root mean square, AR coefficients and average power. Action pattern recognition is carried out with support vector machine. Results The volume of the device is 37mm×27mm×15mm, which can be easily worn on the surface skin of the human body. Conclusions The part of the upper monitoring can realize rehabilitation training for the patients and be extended to game entertainment.

參考文獻:

[1]Yee Mon Aung, Adel Al-Jumaily. sEMG based ANN for shoulder angle prediction[J]. Procedia Engineering, 2012, 41:1009-1015.

[2]Al-Mulla MR, Sepulveda F, Colley M. Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue[J]. Medical Engineering & Physics, 2011,33:411-417.

[3]王凱,于鴻洋,張萍. 基于AdaBoost算法和光流匹配的實時手勢識別[J]. 微電子學與計算機,2012,29(4) :138-141.

Wang Kai, Yu Hongyang, Zhang Ping. Real-time gesture recognition based on AdaBoost algorithm and optical flow matching[J]. Microelectronics & Computer, 2012, 29(4):138-141.

[4]趙大威,姜力,黃海,等.多自由度仿人型假手設計[J].哈爾濱工業(yè)大學學報,2008,40(7):1067-1070.

Zhao Dawei,Jiang Li,Huang Hai,et al. Development of a multi·DOF anthropomorphic prosthetic hand[J]. Journal of Harbin Institute of Technology, 2008,40(7):1067-1070.

[5]胡巍,趙章琰,路知遠,等.無線多通道表面肌電信號采集系統(tǒng)設計木[J]. 電子測量與儀器學報,2009,23(11):30-35.

Hu Wei, Zhao Zhangyan, Lu Zhiyuan, et al. Design of wireless multi—channel surface EMG acquisition system[J]. Journal of Electronic Measurement and Instrument, 2009,23(11):30-35.

[6]王從政,陳 香,董中飛,等.一種基于DSP的實時手勢交互系統(tǒng)[J].傳感技術學報,2011,24(5):688-693.

Wang Congzheng,Chen Xiang,Dong Zhongfei,et al. A real—time DSP-based gesture interaction system[J]. Chinese Journal of Sensors and Actuators, 2011,24(5):688-693.

[7]王人成,鄭雙喜,蔡付文,等.基于表面肌電信號的手指運動動作模式識別系統(tǒng)[J].康復醫(yī)學工程, 2008,23(5):410-412.

Wang Rencheng, Zheng Shuangxi, Cai Fuwen, et al. Recognition system of finger movement pattern based on sEMG[J]. Chinese Journal of Rehabilitation Medicine, 2008,23(5):410-412.

[8]艾青松,盧英,劉泉.高斯徑向基函數重構特征對表面肌電信號識別[J].計算機工程與應用,2013,49(12):182-186. 

Ai Qingsong,Lu Ying,Liu Quan. Recognition of sEMG based on reconstructed feature by Gaussian radial basis function[J]. Computer Engineering and Applications,2013,49(12):182-186.

[9]李琳,王建輝,顧樹生. 一種改進的基于信號能量閾值的表面肌電信號自動分割方法[J].計算機科學,2013,40(6A):188-191.

Li Lin, Wang Jianhui, Gu Shusheng. Improved automatic segmentation method of sEMG based on signals’ energy value[J].Computer Science,2013,40(6A):188-191.

[10]李瑞輝,范志堅,趙翠蓮,等.利用sEMG能量高斯分布特性提取動作信號的方法 [J] .中國醫(yī)療器械雜志, 2014,38(3):177-180.

Li Ruihui, Fan Zhijian, Zhao Cuilian, et al. Motion signal extraction method based on sEMG energy gauss distribution characteristics[J]. Chinese Journal of Medical Instrumentation,2014,38(3):177-180.

[11]李晶皎.模式識別 [M]. 4版. 北京:電子工業(yè)出版社,2010:293. 

Li Jingjiao. Pattern Recognition[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2010:293.


服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]