51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
新疆高發(fā)病食管癌圖像的特征提取及分類(lèi)

Feature extraction and classificationof X-ray images for Xinjiangesophageal cancer with high morbidity

作者: 孔喜梅  木拉提·哈米提  嚴(yán)傳波  姚娟  孫靜  阿布都艾尼·庫(kù)吐魯克 
單位:新疆醫(yī)科大學(xué)醫(yī)學(xué)工程技術(shù)學(xué)院(烏魯木齊830011)
關(guān)鍵詞: 食管癌;灰度共生矩陣;小波變換;特征提取;圖像分類(lèi) 
分類(lèi)號(hào):R318.04;R735.1;TP751
出版年·卷·期(頁(yè)碼):0·0·0(0-0)
摘要:

目的 結(jié)合灰度共生矩陣和小波變換的紋理分析方法提取新疆哈薩克族高發(fā)病食管癌X射線(xiàn)鋇劑造影圖像的特征,旨在為放射科醫(yī)生的診斷決策提供具有實(shí)際參考價(jià)值的輔助信息,提高食管癌診斷的準(zhǔn)確率和效率。方法 選取2種中晚期食管癌——蕈傘型和縮窄型,以及正常食管圖像各100張,利用基于灰度共生矩陣的紋理特征提取方法分別提取食管癌X射線(xiàn)圖像的角二階矩、熵、慣性矩、逆差矩及相關(guān)性的方差作為紋理特征,同時(shí)使用小波變換對(duì)食管癌X射線(xiàn)圖像進(jìn)行二層小波分解,獲取其高頻子圖,并提取高頻子圖的能量特征作為紋理特征。然后,使用C4.5決策樹(shù)算法構(gòu)造一個(gè)分類(lèi)器,對(duì)正常食管和中晚期食管癌圖像進(jìn)行分類(lèi)研究。結(jié)果 共計(jì)提取11維特征,利用單一特征算法進(jìn)行分類(lèi),灰度共生矩陣法分類(lèi)準(zhǔn)確率為64.66%,小波變換法分類(lèi)準(zhǔn)確率為77%。而綜合的灰度共生矩陣和小波變換法的分類(lèi)準(zhǔn)確率為81.67%,更適用于正常食管和中晚期食管癌的分類(lèi)。結(jié)論 本研究將灰度共生矩陣、小波變換算法與決策樹(shù)C4.5相結(jié)合,對(duì)正常食管與蕈傘型和縮窄型食管癌進(jìn)行特征提取及分析,結(jié)果表明本算法分類(lèi)準(zhǔn)確率較高,為開(kāi)發(fā)食管癌的計(jì)算機(jī)輔助診斷系統(tǒng)奠定了基礎(chǔ)。


Objective In this paper,combining gray level co-occurrence matrix (GLCM) with wavelet transform of texture arithmetic method extracted X-ray image texture of esophageal cancer with high morbidity in Xinjiang. This method provided auxiliary information with reference value for radiologist and enhanced accuracy rate and efficiency of esophageal cancer. Methods Two types of middle and terminal esophageal cancer: fungating type esophageal cancer and constrictive esophageal cancer were selected in the experiment,and 100 images of the two types of esophageal cancers and normal esophagus were selected,respectively. We used GLCM texture feature method to extract angular second moment,entropy,contrast,correlation and inverse difference moment of variance respectively for X-ray images of esophageal cancer. Meanwhile,we employed wavelet transform to process two-dimensional discrete wavelet decomposition at second level,obtained its high-frequency content images,and extracted the energy features of high-frequency content images as texture features. The C4.5 decision tree was employed as a classifier. Results Eleven features were extracted by GLCM and wavelet transform methods. The experimental results showed that using single feature classification,the accuracy rate of GLCM classification and wavelet transform classification reached to 64.66% and 77%,respectively. The accuracy rate of the comprehensive of GLCM and wavelet transform method was 81.67%,more suitable for the classification of normal esophagus and advanced esophageal cancer. Conclusions This method achieved high classification performance and lay the foundation of the computer-aided diagnosis system of Kazakh esophageal cancer in Xinjiang.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]